[1]
|
Z. Arabasadi, R. Alizadehsani, M. Roshanzamir, H. Moosaei and A. Yarifard, Computer aided decision making for heart disease detection using hybrid neural network-Genetic algorithm, Computer Methods and Programs in Biomedicine, 141 (2017), 19-26.
|
[2]
|
F. Bazikar, S. Ketabchi and H. Moosaei, DC programming and DCA for parametric-margin $\nu-$support vector machine, Applied Intelligence, (2020), 1–12.
|
[3]
|
D. P. Bertsekas, Nonlinear Programming, Belmont, 1995.
|
[4]
|
E. G. Birgin and J. M. Martinez, Practical Augmented Lagrangian Methods for Constrained Optimization, Society for Industrial and Applied Mathematics, 2014.
doi: 10.1137/1.9781611973365.
|
[5]
|
C. C. Chang and C. J. Lin, LIBSVM: A library for support vector machines, ACM transactions on intelligent systems and technology (TIST), 2 (2011), 1-27.
|
[6]
|
C. Chen and O. L. Mangasarian, A class of smoothing functions for nonlinear and mixed complementarity problems, Computational Optimization and Applications, 5 (1996), 97-138.
doi: 10.1007/BF00249052.
|
[7]
|
C. Chen and O. L. Mangasarian, Smoothing methods for convex inequalities and linear complementarity problems, Mathematical Programming, 71 (1995), 51-69.
doi: 10.1007/BF01592244.
|
[8]
|
J. Demsar, Statistical comparisons of classifiers over multiple data sets, Journal of Machine Learning Research, (2006), 1–30.
|
[9]
|
A. Goli, E. Moeini, A. M. Shafiee, M. Zamani and E. Touti, Application of improved artificial intelligence with runner-root meta-heuristic algorithm for dairy products industry: a case study, International Journal on Artificial Intelligence Tools, 29 (2020), 1-30.
|
[10]
|
A. Goli, H. K. Zare, R. T. Moghaddam and A. Sadeghieh, An improved artificial intelligence based on gray wolf optimization and cultural algorithm to predict demand for dairy products: a case study, IJIMAI, 5 (2019), 15-22.
|
[11]
|
A. Goli, H. K. Zare, R. Tavakkoli-Moghaddam and A. Sadeghieh, Application of robust optimization for a product portfolio problem using an invasive weed optimization algorithm, Numerical Algebra, Control & Optimization, 9 (2019), 187-209.
doi: 10.3934/naco.2019014.
|
[12]
|
A. Goli, H. K. Zare, R. Tavakkoli-Moghaddam and A. Sadeghieh, Hybrid artificial intelligence and robust optimization for a multi-objective product portfolio problem Case study: The dairy products industry, Computers & Industrial Engineering, 9 (2019), ID: 106090.
doi: 10.1016/j.cie.2019.106090.
|
[13]
|
R. L. Iman and J. M. Davenport, Approximations of the critical region of the fbietkan statistic, Communications in Statistics-Theory and Methods, 9 (1980), 571-595.
|
[14]
|
S. Jafarian-Namin, A. Goli, M. Qolipour, M. Mostafaeipour and A. M. Golmohammadi, Forecasting the wind power generation using Box-Jenkins and hybrid artificial intelligence, International Journal of Energy Sector Management, 13 (2019), 1038-1062.
doi: 10.1108/IJESM-06-2018-0002.
|
[15]
|
H. Javadi, H. Moosaei and D. Ciuonzo, Learning wireless sensor networks for source localization, Sensors, 19 (2019), 635.
|
[16]
|
R. K. Jayadeva, R. Khemchandani and S. Chandra, Twin support vector machines for pattern classification, IEEE Transactions on Pattern Analysis and Machine Intelligence, 29 (2007), 905-910.
doi: 10.1142/9789812813220_0009.
|
[17]
|
H. Ju, Q. Hou and L. Jing, Fuzzy and interval-valued fuzzy nonparallel support vector machine, Journal of Intelligent and Fuzzy Systems, 36 (2019), 2677-2690.
|
[18]
|
S. Ketabchi and H. Moosaei, Minimum norm solution to the absolute value equation in the convex case, Journal of Optimization Theory and Applications, 154 (2012), 1080-1087.
doi: 10.1007/s10957-012-0044-3.
|
[19]
|
S. Ketabchi, H. Moosaei, M. Razzaghi and P. Pardalos, An improvement on parametric $\nu$-support vector algorithm for classification, Ann. Oper. Res., 276 (2019), 155-168.
doi: 10.1007/s10479-017-2724-8.
|
[20]
|
S. Ketabchi and M. Behboodi-Kahoo, Smoothing techniques and augmented Lagrangian method for recourse problem of two-stage stochastic linear programming, Journal of Applied Mathematics, (2013), Article ID: 735916.
doi: 10.1155/2013/735916.
|
[21]
|
S. Ketabchi and M. Behboodi-Kahoo, Augmented Lagrangian method for recourse problem of two-stage stochastic linear programming, Kybernetika, 49 (2013), 188-198.
|
[22]
|
R. Khemchandani, P. Saigal and S. Chandra, Improvements on $ \nu$-twin support vector machine, Neural Networks, 79 (2016), 97-107.
|
[23]
|
M. A. Kumar and M. Gopal, Application of smoothing technique on twin support vector machines, Pattern Recognition Letters, 29 (2008), 1842-1848.
doi: 10.1007/978-1-84996-098-4.
|
[24]
|
Y. J. Lee and O. L. Mangasarian, SSVM: A smooth support vector machine for classification, Computational Optimization and Applications, 20 (2001), 5-22.
doi: 10.1023/A:1011215321374.
|
[25]
|
H. Moosaei, S. Ketabchi, M. Razzaghi and and M. Tanveer, Generalized twin support vector machines, Neural Processing Letters, 53 (2021), 1545-1564.
|
[26]
|
M. Lichman, UCI Machine Learning Repository, Irvine, CA: University of California, School of Information and Computer Science, 2013.
|
[27]
|
W. Noble, S.William and others, Support vector machine applications in computational biology, Kernel Methods in Computational Biology, 71 (2004), 92.
|
[28]
|
R. Lotfi, Y. Z. Mehrjerdi, M. S. Pishvaee, A. Sadeghieh and G. W. Weber, A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk, Numerical Algebra, Control and Optimization, 11 (2021), 221-253.
doi: 10.3934/naco.2020023.
|
[29]
|
R. Lotfi, Z. Yadegari, S. H. Hosseini, A. H. Khameneh, E. B. Tirkolaee and G. W. Weber, A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project, Journal of Industrial and Management Optimization, Online.
doi: 10.3934/jimo.2020158.
|
[30]
|
O. L. Mangasarian and E. W. Wild, Multisurface proximal support vector machine classification via generalized eigenvalues, IEEE Trans. Pattern Anal. Mach. Intell., 28 (2005), 69-74.
|
[31]
|
O. L. Mangasarian and E. W. Wild, Proximal support vector machine classifiers, In Proceedings KDD-2001: Knowledge Discovery and Data Mining, 2001.
|
[32]
|
J. Nocedal and S. J. Wright, Numerical Optimization, Springer Series in Operations Research, Springer-Verlag, New York, 1999.
doi: 10.1007/b98874.
|
[33]
|
X. Peng, A $\nu$-twin support vector machine ($\nu$-TSVM) classifier and its geometric algorithms, Information Sciences, 180 (2010), 3863-3875.
doi: 10.1016/j.ins.2010.06.039.
|
[34]
|
C. Platt, Fast training of support vector machines using sequential minimal optimization, in Advances in Kernel Methods, (1999), 185–208.
|
[35]
|
Y. H. Shao, C. H. Zhang, X. B. Wang and N. Y. Deng, Improvements on twin support vector machines, IEEE Transactions on Neural Networks, 22 (2011), 962-968.
doi: 10.1109/TNNLS.2014.2379930.
|
[36]
|
Y. Tian and Z. Qi, Review on: twin support vector machines, Annals of Data Science, 1 (2014), 253-277.
doi: 10.1007/s40745-014-0018-4.
|
[37]
|
Y. Tian, X. Ju, Z. Qi and Y. Shi, Improved twin support vector machine, Science China Mathematics, 57 (2014), 417-432.
doi: 10.1007/s11425-013-4718-6.
|
[38]
|
H. Wang, Z. Zhou and Y. Xu, An improved $ \nu$-twin bounded support vector machine, Appl. Intell., 48 (2018), 1041-1053.
|
[39]
|
Y. Wang, T. Wang and J. Bu, Color image segmentation using pixel wise support vector machine classification, Pattern Recognition, 44 (2011), 777-787.
|
[40]
|
Y. Yan and Q. Li, An efficient augmented Lagrangian method for support vector machine, Optimization Methods and Software, 35 (2020), 855-883.
doi: 10.1080/10556788.2020.1734002.
|