• Previous Article
    Complexity analysis of an interior-point algorithm for linear optimization based on a new parametric kernel function with a double barrier term
  • NACO Home
  • This Issue
  • Next Article
    Description of multi-periodic signals generated by complex systems: NOCFASS - New possibilities of the Fourier analysis
doi: 10.3934/naco.2021038
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Triple-hierarchical problems with variational inequality

1. 

Department of Mathematics, Faculty of Science and Agricultural Technology, Rajamangala University of Technology Lanna, 99 Chiangrai 57120, Thailand

2. 

Department of Mathematics, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan

3. 

Department of Mathematics, Faculty of Science, King Mongkut's University of Technology Thonburi, 126 Bangkok 10140, Thailand

* Corresponding author: Thanyarat Jitpeera

Received  September 2020 Revised  August 2021 Early access September 2021

Fund Project: The first author is supported by RMUTL

In this paper, we suggest and analyze an iterative scheme for finding the triple-hierarchical problem in a real Hilbert space. We also consider the strong convergence for the proposed method under some assumptions. Our results extend ones of Ceng et. al (2011) [2], Yao et. al (2011) [24].

Citation: Thanyarat JItpeera, Tamaki Tanaka, Poom Kumam. Triple-hierarchical problems with variational inequality. Numerical Algebra, Control and Optimization, doi: 10.3934/naco.2021038
References:
[1]

A. Bnouhachem, S. A. Homidan and Q. H. Ansari, An iterative method for common solutions of equilibrium problems and hierarchical fixed point problems, Fixed Point Theory Appl., (2014), Article number: 194. doi: 10.1186/1687-1812-2014-194.

[2]

L. C. CengQ. H. Ansari and J. C Yao, Iterative methods for triple hierarchical variational inequalities in Hilbert spaces, J. Optim. Theory Appl., 151 (2011), 489-512.  doi: 10.1007/s10957-011-9882-7.

[3]

L. C. Ceng, A. Latif, Q. H. Ansari and J. C Yao, Hybrid extragradientmethod for hierarchical variational inequalities, Fixed Point Theory Appl., (2014), Article number: 222. doi: 10.1186/1687-1812-2014-222.

[4]

P. L. Combettes, A block-itrative surrogate constraint splitting method for quadratic signal recovery, IEEE Trans. Signal Process, 51 (2003, ) 1771–1782. doi: 10.1109/TSP.2003.812846.

[5]

W. Q. Deng, New viscosity method for hierarchical fixed point approach tovariational inequalities, Fixed Point Theory Appl., (2013), Article number: 219. doi: 10.1186/1687-1812-2013-219.

[6]

P. Hartman and G. Stampacchia, On some nonlinear elliptic differential functional equations, Acta Math., 115 (1966), 271-310.  doi: 10.1007/BF02392210.

[7]

S. A. Hirstoaga, Iterative selection method for common fixed point problems, J. Math. Anal. Appl., 324 (2006), 1020-1035.  doi: 10.1016/j.jmaa.2005.12.064.

[8]

H. Iiduka, Decentralized hierarchical constrained convex optimization, Optim. Engineer, 21 (2020), 181-213.  doi: 10.1007/s11081-019-09440-7.

[9]

H. Iiduka, Fixed point optimization algorithm and its application to power control in CDMA data networks, Math. Program., Ser. A, 133 (2012), 227-242.  doi: 10.1007/s10107-010-0427-x.

[10]

H. Iiduka, Iterative algorithm for solving triple-hierarchical constrained optimization problem, J. Optim. Theory Appl., 148 (2011), 580-592.  doi: 10.1007/s10957-010-9769-z.

[11]

H. Iiduka, Strong convergence for an iterative method for the triple-hierarchical constrained optimization problem, Nonlinear Anal., 71 (2009), e1292–e1297. doi: 10.1016/j.na.2009.01.133.

[12]

H. IidukaW. Takahashi and M. Toyoda, Approximation of solutions of variational inequalities for monotone mappings, Pananmer. Math. J., 14 (2004), 49-61. 

[13]

T. Jitpeera and P. Kumam, Algorithms for solving the variational inequality problem over the triple hierarchical problem, Abstract Appl. Anal., (2012), Article ID 827156. doi: 10.1155/2012/827156.

[14]

T. Jitpeera and P. Kumam, A new explicit triple hierarchical problem over the set of fixed point and generalized mixed equilibrium problem, J. Ineq. Appl., (2012), Article number: 82. doi: 10.1186/1029-242X-2012-82.

[15]

W. A. Kirk, Fixed point theorem for mappings which do not increase distance, Amer. Math. Monthly, 72 (1965), 1004-1006.  doi: 10.2307/2313345.

[16]

P. E. Maing$\acute{e}$ and A. Moudafi, Strong convergence of an iterative method for hierarchical fixed-point problems, Pacific. J. Optim., 3 (2007), 529-538. 

[17]

Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73 (1967), 595-597.  doi: 10.1090/S0002-9904-1967-11761-0.

[18]

K. Slavakis and I. Yamada, Robust wideband beamforming by the hybrid steepest descent method, IEEE Trans. Signal Process, 55 (2007), 4511-4522.  doi: 10.1109/TSP.2007.896252.

[19]

K. SlavakisI. Yamada and K. Sakaniwa, Computation of symmetric positive definite Toeplitz matrices by the hybrid steepest descent method, Signal Process, 83 (2003), 1135-1140. 

[20]

N. Wairojjana and P. Kumam, General iterative algorithms for hierarchical fixed points approach to variational inequalities, J. Appl. Math., (2012), Article ID 174318. doi: 10.1155/2012/174318.

[21]

I. Yamada, The hybrid steepest descent method for the variational inequality problems over the intersection of fixed point sets of nonexpansive mappings, In Inherently Paralle Algorithms for Feasibllity and Optimization and Their Applications (eds. D. Butnariu, Y. Censor and S. Reich), Elsevier, Amsterdam, (2001), 473–504. doi: 10.1016/S1570-579X(01)80028-8.

[22]

I. Yamada and N. Ogura, Hybrid steepest descent method for variational inequality problem over the fixed point set of certain quasi-nonexpansive mapping, Numer. Funct. Anal. Optim., 25 (2004), 619-655.  doi: 10.1081/NFA-200045815.

[23]

I. Yamada, N. Ogura and N. Shirakawa, A numerically robust hybrid steepest descent method for the convexly constrained generalized inverse problems, in: Inverse Problems, Image Analysis, and Medical Imaging, in: Contemp. Math. (eds. Z. Nashed, O. Scherzer), Amer. Math. Soc., 313 (2002), 269–305. doi: 10.1090/conm/313/05379.

[24]

Y. Yao, Y. C. Liou and S. M. Kang, Algorithms construction for variational inequaliies, Fixed Point Theory Appl., (2011), Article number: 794203. doi: 10.1155/2011/794203.

[25]

H. K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc., 66 (2002), 240-256.  doi: 10.1112/S0024610702003332.

show all references

References:
[1]

A. Bnouhachem, S. A. Homidan and Q. H. Ansari, An iterative method for common solutions of equilibrium problems and hierarchical fixed point problems, Fixed Point Theory Appl., (2014), Article number: 194. doi: 10.1186/1687-1812-2014-194.

[2]

L. C. CengQ. H. Ansari and J. C Yao, Iterative methods for triple hierarchical variational inequalities in Hilbert spaces, J. Optim. Theory Appl., 151 (2011), 489-512.  doi: 10.1007/s10957-011-9882-7.

[3]

L. C. Ceng, A. Latif, Q. H. Ansari and J. C Yao, Hybrid extragradientmethod for hierarchical variational inequalities, Fixed Point Theory Appl., (2014), Article number: 222. doi: 10.1186/1687-1812-2014-222.

[4]

P. L. Combettes, A block-itrative surrogate constraint splitting method for quadratic signal recovery, IEEE Trans. Signal Process, 51 (2003, ) 1771–1782. doi: 10.1109/TSP.2003.812846.

[5]

W. Q. Deng, New viscosity method for hierarchical fixed point approach tovariational inequalities, Fixed Point Theory Appl., (2013), Article number: 219. doi: 10.1186/1687-1812-2013-219.

[6]

P. Hartman and G. Stampacchia, On some nonlinear elliptic differential functional equations, Acta Math., 115 (1966), 271-310.  doi: 10.1007/BF02392210.

[7]

S. A. Hirstoaga, Iterative selection method for common fixed point problems, J. Math. Anal. Appl., 324 (2006), 1020-1035.  doi: 10.1016/j.jmaa.2005.12.064.

[8]

H. Iiduka, Decentralized hierarchical constrained convex optimization, Optim. Engineer, 21 (2020), 181-213.  doi: 10.1007/s11081-019-09440-7.

[9]

H. Iiduka, Fixed point optimization algorithm and its application to power control in CDMA data networks, Math. Program., Ser. A, 133 (2012), 227-242.  doi: 10.1007/s10107-010-0427-x.

[10]

H. Iiduka, Iterative algorithm for solving triple-hierarchical constrained optimization problem, J. Optim. Theory Appl., 148 (2011), 580-592.  doi: 10.1007/s10957-010-9769-z.

[11]

H. Iiduka, Strong convergence for an iterative method for the triple-hierarchical constrained optimization problem, Nonlinear Anal., 71 (2009), e1292–e1297. doi: 10.1016/j.na.2009.01.133.

[12]

H. IidukaW. Takahashi and M. Toyoda, Approximation of solutions of variational inequalities for monotone mappings, Pananmer. Math. J., 14 (2004), 49-61. 

[13]

T. Jitpeera and P. Kumam, Algorithms for solving the variational inequality problem over the triple hierarchical problem, Abstract Appl. Anal., (2012), Article ID 827156. doi: 10.1155/2012/827156.

[14]

T. Jitpeera and P. Kumam, A new explicit triple hierarchical problem over the set of fixed point and generalized mixed equilibrium problem, J. Ineq. Appl., (2012), Article number: 82. doi: 10.1186/1029-242X-2012-82.

[15]

W. A. Kirk, Fixed point theorem for mappings which do not increase distance, Amer. Math. Monthly, 72 (1965), 1004-1006.  doi: 10.2307/2313345.

[16]

P. E. Maing$\acute{e}$ and A. Moudafi, Strong convergence of an iterative method for hierarchical fixed-point problems, Pacific. J. Optim., 3 (2007), 529-538. 

[17]

Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73 (1967), 595-597.  doi: 10.1090/S0002-9904-1967-11761-0.

[18]

K. Slavakis and I. Yamada, Robust wideband beamforming by the hybrid steepest descent method, IEEE Trans. Signal Process, 55 (2007), 4511-4522.  doi: 10.1109/TSP.2007.896252.

[19]

K. SlavakisI. Yamada and K. Sakaniwa, Computation of symmetric positive definite Toeplitz matrices by the hybrid steepest descent method, Signal Process, 83 (2003), 1135-1140. 

[20]

N. Wairojjana and P. Kumam, General iterative algorithms for hierarchical fixed points approach to variational inequalities, J. Appl. Math., (2012), Article ID 174318. doi: 10.1155/2012/174318.

[21]

I. Yamada, The hybrid steepest descent method for the variational inequality problems over the intersection of fixed point sets of nonexpansive mappings, In Inherently Paralle Algorithms for Feasibllity and Optimization and Their Applications (eds. D. Butnariu, Y. Censor and S. Reich), Elsevier, Amsterdam, (2001), 473–504. doi: 10.1016/S1570-579X(01)80028-8.

[22]

I. Yamada and N. Ogura, Hybrid steepest descent method for variational inequality problem over the fixed point set of certain quasi-nonexpansive mapping, Numer. Funct. Anal. Optim., 25 (2004), 619-655.  doi: 10.1081/NFA-200045815.

[23]

I. Yamada, N. Ogura and N. Shirakawa, A numerically robust hybrid steepest descent method for the convexly constrained generalized inverse problems, in: Inverse Problems, Image Analysis, and Medical Imaging, in: Contemp. Math. (eds. Z. Nashed, O. Scherzer), Amer. Math. Soc., 313 (2002), 269–305. doi: 10.1090/conm/313/05379.

[24]

Y. Yao, Y. C. Liou and S. M. Kang, Algorithms construction for variational inequaliies, Fixed Point Theory Appl., (2011), Article number: 794203. doi: 10.1155/2011/794203.

[25]

H. K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc., 66 (2002), 240-256.  doi: 10.1112/S0024610702003332.

[1]

Ouafa Belguidoum, Hassina Grar. An improved projection algorithm for variational inequality problem with multivalued mapping. Numerical Algebra, Control and Optimization, 2022  doi: 10.3934/naco.2022002

[2]

Fabrizio Colombo, Irene Sabadini, Frank Sommen. The inverse Fueter mapping theorem. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1165-1181. doi: 10.3934/cpaa.2011.10.1165

[3]

Yurii Nesterov, Laura Scrimali. Solving strongly monotone variational and quasi-variational inequalities. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1383-1396. doi: 10.3934/dcds.2011.31.1383

[4]

Qilin Wang, Shengji Li. Lower semicontinuity of the solution mapping to a parametric generalized vector equilibrium problem. Journal of Industrial and Management Optimization, 2014, 10 (4) : 1225-1234. doi: 10.3934/jimo.2014.10.1225

[5]

John Banks. Topological mapping properties defined by digraphs. Discrete and Continuous Dynamical Systems, 1999, 5 (1) : 83-92. doi: 10.3934/dcds.1999.5.83

[6]

Mads Kyed. On a mapping property of the Oseen operator with rotation. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1315-1322. doi: 10.3934/dcdss.2013.6.1315

[7]

Ken-Ichi Nakamura, Toshiko Ogiwara. Periodically growing solutions in a class of strongly monotone semiflows. Networks and Heterogeneous Media, 2012, 7 (4) : 881-891. doi: 10.3934/nhm.2012.7.881

[8]

Shaotao Hu, Yuanheng Wang, Bing Tan, Fenghui Wang. Inertial iterative method for solving variational inequality problems of pseudo-monotone operators and fixed point problems of nonexpansive mappings in Hilbert spaces. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022060

[9]

Mike Boyle, Sompong Chuysurichay. The mapping class group of a shift of finite type. Journal of Modern Dynamics, 2018, 13: 115-145. doi: 10.3934/jmd.2018014

[10]

Zhengxin Zhou. On the Poincaré mapping and periodic solutions of nonautonomous differential systems. Communications on Pure and Applied Analysis, 2007, 6 (2) : 541-547. doi: 10.3934/cpaa.2007.6.541

[11]

Grace Nnennaya Ogwo, Chinedu Izuchukwu, Oluwatosin Temitope Mewomo. A modified extragradient algorithm for a certain class of split pseudo-monotone variational inequality problem. Numerical Algebra, Control and Optimization, 2022, 12 (2) : 373-393. doi: 10.3934/naco.2021011

[12]

Fuzhong Cong, Hongtian Li. Quasi-effective stability for a nearly integrable volume-preserving mapping. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 1959-1970. doi: 10.3934/dcdsb.2015.20.1959

[13]

Mohamed Badreddine, Thomas K. DeLillo, Saman Sahraei. A Comparison of some numerical conformal mapping methods for simply and multiply connected domains. Discrete and Continuous Dynamical Systems - B, 2019, 24 (1) : 55-82. doi: 10.3934/dcdsb.2018100

[14]

Qiang Li. A kind of generalized transversality theorem for $C^r$ mapping with parameter. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1043-1050. doi: 10.3934/dcdss.2017055

[15]

Xiao-Bing Li, Xian-Jun Long, Zhi Lin. Stability of solution mapping for parametric symmetric vector equilibrium problems. Journal of Industrial and Management Optimization, 2015, 11 (2) : 661-671. doi: 10.3934/jimo.2015.11.661

[16]

Farrukh Mukhamedov, Otabek Khakimov. Chaotic behavior of the P-adic Potts-Bethe mapping. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 231-245. doi: 10.3934/dcds.2018011

[17]

Jean-Philippe Cointet, David Chavalarias. Multi-level science mapping with asymmetrical paradigmatic proximity. Networks and Heterogeneous Media, 2008, 3 (2) : 267-276. doi: 10.3934/nhm.2008.3.267

[18]

Vladimir Müller, Aljoša Peperko. Lower spectral radius and spectral mapping theorem for suprema preserving mappings. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 4117-4132. doi: 10.3934/dcds.2018179

[19]

Augusto VisintiN. On the variational representation of monotone operators. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 909-918. doi: 10.3934/dcdss.2017046

[20]

Samir EL Mourchid. On a hypercylicity criterion for strongly continuous semigroups. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 271-275. doi: 10.3934/dcds.2005.13.271

 Impact Factor: 

Metrics

  • PDF downloads (373)
  • HTML views (291)
  • Cited by (0)

Other articles
by authors

[Back to Top]