In this paper, we study excess demand equilibrium problems in Euclidean spaces. Applying the Glicksberg's fixed point theorem, sufficient conditions for the existence of solutions for the reference problems are established. We introduce a concept of well-posedness, say Levitin–Polyak well-posedness in the sense of Painlevé–Kuratowski, and investigate sufficient conditions for such kind of well-posedness.
Citation: |
[1] |
L. Q. Anh and T. Q. Duy, Tykhonov well-posedness for lexicographic equilibrium problems, Optimization, 65 (2016), 1929-1948.
doi: 10.1080/02331934.2016.1209673.![]() ![]() ![]() |
[2] |
L. Q. Anh, T. Q. Duy and D. V. Hien, Well-posedness for the optimistic counterpart of uncertain vector optimization problems, Ann. Oper. Res., 295 (2020), 517-533.
doi: 10.1007/s10479-020-03840-0.![]() ![]() ![]() |
[3] |
L. Q. Anh, T. Q. Duy and P. Q. Khanh, Levitin–Polyak well-posedness for equilibrium problems with the lexicographic order, Positivity, 23 (2021), 1323-1349.
doi: 10.1007/s11117-021-00818-5.![]() ![]() ![]() |
[4] |
L. Q. Anh, T. Q. Duy, L. D. Muu and T. Van Tri, The Tikhonov regularization for vector equilibrium problems, Comput. Optim. Appl., 78 (2021), 769-792.
doi: 10.1007/s10589-020-00258-z.![]() ![]() ![]() |
[5] |
L. Q. Anh and N. V. Hung, Levitin–Polyak well-posedness for strong bilevel vector equilibrium problems and applications to traffic network problems with equilibrium constraints, Positivity, 23 (2018), 1223-1239.
doi: 10.1007/s11117-018-0569-2.![]() ![]() ![]() |
[6] |
K. J. Arrow, General economic equilibrium: purpose, analytic techniques, collective choice, Am. Econ. Rev., 64 (1974), 253-272.
![]() |
[7] |
P. Boonman, L. Q. Anh and R. Wangkeeree, Levitin–Polyak well-posedness by perturbations of strong vector mixed quasivariational inequality problems, J. Nonlinear Convex Anal., 22 (2021), 1327-1352.
![]() ![]() |
[8] |
J. M. Bottazzi and T. Hens, Excess demand functions and incomplete markets, J. Econ. Theory, 68 (1996), 49-63.
doi: 10.1007/s001990100200.![]() ![]() ![]() |
[9] |
D. L. Cai, M. Sofonea and Y. B. Xiao, Tykhonov well-posedness of a mixed variational problem, Optimization, 2020.
doi: 10.1080/02331934.2020.1808646.![]() ![]() |
[10] |
J. Chen, Z. Wan and L. Yuan, Existence of solutions and $\alpha $-well-posedness for a system of constrained set-valued variational inequalities, Numer. Alg., Control Optim., 3 (2013), 567-581.
doi: 10.3934/naco.2013.3.567.![]() ![]() ![]() |
[11] |
P. A. Chiappori and I. Ekeland, Disaggregation of excess demand functions in incomplete markets, J. Math. Econ., 31 (1999), 111-129.
doi: 10.1016/S0304-4068(98)00059-7.![]() ![]() ![]() |
[12] |
G. Debreu, Excess demand functions, J. Math. Econ., 1 (1974), 15-21.
![]() |
[13] |
T. Q. Duy, Levitin–Polyak well-posedness in set optimization concerning Pareto efficiency, Positivity, 2021.
doi: 10.1007/s11117-021-00851-4.![]() ![]() |
[14] |
I. L. Glicksberg, A further generalization of the kakutani fixed point theorem, with application to nash equilibrium points, Proc. Am. Math. Soc., 3 (1952), 170-174.
doi: 10.2307/2032478.![]() ![]() ![]() |
[15] |
M. Gupta and M. Srivastava, Well-posedness and scalarization in set optimization involving ordering cones with possibly empty interior, J. Glob. Optim., 73 (2019), 447-463.
doi: 10.1007/s10898-018-0695-1.![]() ![]() ![]() |
[16] |
Y. Han and X.-H. Gong, Levitin–Polyak well-posedness of symmetric vector quasi-equilibrium problems, Optimization, 64 (2015), 1537-1545.
doi: 10.1080/02331934.2014.886037.![]() ![]() ![]() |
[17] |
R. Hu, M. Sofonea and Y. B. Xiao, A Tykhonov-type well-posedness concept for elliptic hemivariational inequalities, Z. Angew. Math. Phys., 71 (2020), 1-17.
doi: 10.1007/s00033-020-01337-1.![]() ![]() ![]() |
[18] |
S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis. Volume I: Theory, Kluwer, Dordrecht, 1997.
doi: 10.1007/978-1-4615-6359-4.![]() ![]() ![]() |
[19] |
X. X. Huang and X. Q. Yang, Generalized Levitin–Polyak well-posedness in constrained optimization, SIAM J. Optim., 17 (2006), 243-258.
doi: 10.1137/040614943.![]() ![]() ![]() |
[20] |
G. Kassay and V. D. Rădulescu, Equilibrium Problems and Applications, Academic Press, London, 2018.
![]() ![]() |
[21] |
P. Q. Khanh, L. M. Luu and T. T. M. Son, On the stability and Levitin–Polyak well-posedness of parametric multiobjective generalized games, Vietnam J. Math., 44 (2016), 857-871.
doi: 10.1007/s10013-016-0189-8.![]() ![]() ![]() |
[22] |
S. Khoshkhabar-amiranloo, Characterizations of generalized levitin–polyak well-posed set optimization problems, Optim. Lett., 13 (2019), 147-161.
doi: 10.1007/s11590-018-1258-6.![]() ![]() ![]() |
[23] |
K. Kuratowski, Topology, Academic Press, London, 1968.
![]() ![]() |
[24] |
C. S. Lalitha and P. Chatterjee, Levitin–Polyak well-posedness for constrained quasiconvex vector optimization problems, J. Glob. Optim., 59 (2014), 191-205.
doi: 10.1007/s10898-013-0103-9.![]() ![]() ![]() |
[25] |
E. S. Levitin and B. T. Polyak, On the convergence of minimizing sequences in conditional extremum problems, Dokl. Akad. Nauk SSSR, 168 (1966), 997-1000.
![]() ![]() |
[26] |
R. R. Mantel, On the characterization of aggregate excess demand, J. Econ. Theory, 7 (1974), 348-353.
![]() |
[27] |
T. Momi, Excess demand function around critical prices in incomplete markets, J. Math. Econ., 46 (2010), 293-302.
doi: 10.1016/j.jmateco.2009.11.013.![]() ![]() ![]() |
[28] |
J. K.H. Quah, The existence of equilibrium when excess demand obeys the weak axiom, J. Math. Econ., 44 (2008), 337-343.
doi: 10.1016/j.jmateco.2007.05.010.![]() ![]() ![]() |
[29] |
H. Sonnenschein, Do Walras' identity and continuity characterize the class of community excess demand functions?, J. Econ. Theory, 6 (1973), 345-354.
doi: 10.1016/0022-0531(73)90066-5.![]() ![]() ![]() |
[30] |
G. Tian, On the existence of price equilibrium in economies with excess demand functions, Econ. Theory Bull., 4 (2016), 5-16.
doi: 10.1007/s40505-015-0091-7.![]() ![]() ![]() |
[31] |
A. N. Tykhonov, On the stability of the functional optimization problem, USSR Comput. Math. Math. Phys., 6 (1966), 28-33.
![]() |
[32] |
G. Virmani and M. Srivastava, Levitin-Polyak well-posedness of constrained inverse quasivariational inequality, Numer. Func. Anal. Optim., 38 (2017), 91-109.
doi: 10.1080/01630563.2016.1232728.![]() ![]() ![]() |
[33] |
P. T. Vui, L. Q. Anh and R. Wangkeeree, Levitin–Polyak well-posedness for set optimization problems involving set order relations, Positivity, 23 (2019), 599-616.
doi: 10.1007/s11117-018-0627-9.![]() ![]() ![]() |
[34] |
K. C. Wong, Excess demand functions, equilibrium prices, and existence of equilibrium, Econ. Theory, 10 (1997), 39-54.
doi: 10.1007/s001990050145.![]() ![]() ![]() |