March  2022, 12(1): 63-78. doi: 10.3934/naco.2021051

Weak convergence theorems for symmetric generalized hybrid mappings and equilibrium problems

1. 

Department of Applied Mathematics, Pukyong National University, Busan, 48513, Korea

2. 

Department of Scientific Fundamentals, Vietnam Trade Union University, Hanoi, Vietnam

3. 

Department of Mathematics, Faculty of Information Technology, Le Quy Don Technical University, Hanoi, Vietnam

*Corresponding author

Received  March 2020 Revised  October 2021 Published  March 2022 Early access  November 2021

Fund Project: This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (NRF-2019R1A2C1008672)

In this paper, we introduce three new iterative methods for finding a common point of the set of fixed points of a symmetric generalized hybrid mapping and the set of solutions of an equilibrium problem in a real Hilbert space. Each method can be considered as an combination of Ishikawa's process with the proximal point algorithm, the extragradient algorithm with or without linesearch. Under certain conditions on parameters, the iteration sequences generated by the proposed methods are proved to be weakly convergent to a solution of the problem. These results extend the previous results given in the literature. A numerical example is also provided to illustrate the proposed algorithms.

Citation: Do Sang Kim, Nguyen Ngoc Hai, Bui Van Dinh. Weak convergence theorems for symmetric generalized hybrid mappings and equilibrium problems. Numerical Algebra, Control and Optimization, 2022, 12 (1) : 63-78. doi: 10.3934/naco.2021051
References:
[1]

P. N. Anh, A hybrid extragradient method extended to fixed point problems and equilibrium problems, Optim., 62 (2013), 271-283.  doi: 10.1080/02331934.2011.607497.

[2]

G. BigiM. CastellaniM. Pappalardo and M. Passacantando, Existence and solution methods for equilibria, Eur. J. Oper. Res., 227 (2013), 1-11.  doi: 10.1016/j.ejor.2012.11.037.

[3]

E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student, 63 (1994), 127-149. 

[4]

P. L. Combettes and A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal., 6 (2005), 117-136. 

[5]

J. ContrerasM. Klusch and J. B. Krawczyk, Numerical solution to Nash-Cournot equilibria in coupled constraint electricity markets, IEEE Trans. Power Syst., 19 (2004), 195-206. 

[6]

B. V. Dinh and D. S. Kim, Extragradient algorithms for equilibrium problems and symmetric generalized hybrid mappings, Optim. Lett., 11 (2016), 537-553.  doi: 10.1007/s11590-016-1025-5.

[7]

B. V. Dinh and L. D. Muu, A projection algorithm for solving pseudomonotone equilibrium problems and it's application to a class of bilevel equilibria, Optim., 64 (2015), 559-575.  doi: 10.1080/02331934.2013.773329.

[8]

B. V. DinhP. G. Hung and L. D. Muu, Bilevel optimization as a regularization approach to pseudomonotone equilibrium problems, Numer. Funct. Anal. Optim., 35 (2014), 539-563.  doi: 10.1080/01630563.2013.813857.

[9]

B. V. Dinh and L. D. Muu, On penalty and gap function methods for bilevel equilibrium problems, J. Appl. Math., (2011) DOI: 10.1155/2011/646452. doi: 10.1155/2011/646452.

[10]

F. Facchinei and J. S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Springer, New York, 2003.

[11]

A. Genel and J. Lindenstrass, An example concerning fixed points, Isarel J. Math., 22 (1975), 81-86.  doi: 10.1007/BF02757276.

[12]

D. V. HieuL. D. Muu and P. K. Anh, Parallel hybrid extragradient methods for pseudomonotone equilibrium problems and nonexpansive mappings, Numer. Algor., 73 (2016), 197-217.  doi: 10.1007/s11075-015-0092-5.

[13]

M. HojoT. Suzuki and W. Takahashi, Fixed point theorems and convergence theorems for generalized hybrid non-self mappings in Hilbert spaces, J. Nonlinear Convex Anal., 14 (2013), 363-376. 

[14]

H. Iiduka, Fixed point optimization algorithm and its application to power control in CDMA data networks, Math. Program., Ser. A, 133 (2012), 227-242.  doi: 10.1007/s10107-010-0427-x.

[15]

S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 40 (1974), 147-150.  doi: 10.2307/2039245.

[16]

S. Itoh and W. Takahashi, The common fixed point theory of single-valued mappings and multi-valued mappings, Pacific J. Math., 79 (1978), 493-508. 

[17]

T. Kawasaki and W. Takahashi, Existence and mean approximation of fixed points of generalized hybrid mappings in Hilbert spaces, J. Nonlinear Convex Anal., 14 (2013), 71-87. 

[18]

F. Kohsaka and W. Takahashi, Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces, Arch. Math., 91 (2008), 166-177.  doi: 10.1007/s00013-008-2545-8.

[19]

I. V. Konnov, Combined Relaxation Methods for Variational Inequalities, Lecture Notes in Economics and Mathematical System, 495 (2001), Springer, Berlin. doi: 10.1007/978-3-642-56886-2.

[20]

G. M. Korpelevich, The extragradient method for finding saddle points and other problems, Matekon, 12 (1976), 747-756. 

[21]

W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506-510.  doi: 10.2307/2032162.

[22]

F. Moradlou and Al izadeh, Strong convergence theorem by a new iterative method for equilibrium problems and symmetric generalized hybrid mappings, Mediterr. J. Math., 13 (2016), 379-390.  doi: 10.1007/s00009-014-0462-6.

[23]

A. Moudafi, Proximal point algorithm extended to equilibrium problems, J. Nat. Geom., 15 (1999), 91-100. 

[24]

L. D. Muu and W. Oettli, Convergence of an adaptive penalty scheme for finding constrained equilibria, Nonlinear Anal.: TMA., 18 (1992), 1159-1166.  doi: 10.1016/0362-546X(92)90159-C.

[25]

L. D. Muu and T. D. Quoc, Regularization algorithms for solving monotone Ky Fan inequalities with application to a Nash-Cournot equilibrium model, J. Optim. Theory Appl., 142 (2009), 185-204.  doi: 10.1007/s10957-009-9529-0.

[26] R. T. Rockafellar, Convex Analysis, Princeton University Press, 1970. 
[27]

J. Schu, Weak and strong convergence to fixed points of asymptotically noexpansive mappings, Bulletin of the Australian Math. Soc., 43 (1991), 153-159.  doi: 10.1017/S0004972700028884.

[28]

A. Tada and W. Takahashi, Weak and strong convergence theorem for nonexpansive mapping and equilibrium problem, J. Optim. Theory Appl., 133 (2007), 359-370.  doi: 10.1007/s10957-007-9187-z.

[29]

W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl., 118 (2003), 417-428.  doi: 10.1023/A:1025407607560.

[30]

W. TakahashiN. C. Wong and J. C. Yao, Fixed point theorems for new generalized hybrid mappings in Hilbert spaces and applications, Taiwanese J. Math., 17 (2013), 1597-1611.  doi: 10.11650/tjm.17.2013.2921.

[31]

W. Takahashi, Fixed point theorems for new nonlinear mappings in a Hilbert space, J. Nonlinear Convex Anal., 11 (2010), 79-88. 

[32]

D. Q. TranL. M. Dung and V. H. Nguyen, Extragradient algorithms extended to equilibrium problems, Optim., 57 (2008), 749-776.  doi: 10.1080/02331930601122876.

[33]

N. N. TamJ. C. Yao and N. D. Yen, Solution methods for pseudomonotone variational inequalities, J. Optim. Theory Appl., 38 (2008), 253-273.  doi: 10.1007/s10957-008-9376-4.

[34]

P. T. VuongJ. J. Strodiot and V. H. Nguyen, Extragradient methods and linesearch algorithms for solving Ky Fan inequalities and fixed point problems, J. Optim. Theory Appl., 155 (2013), 605-627.  doi: 10.1007/s10957-012-0085-7.

[35]

H. K. Xu, A variable Krasnosel'ski$\mathop {\rm{i}}\limits^ \vee$-Mann algorithm and the multiple-set split feasibility problem, Inverse Problems, 22 (2006), 2021-2034.  doi: 10.1088/0266-5611/22/6/007.

[36]

C. M. Yanes and H. K. Xu, Strong convergence of the $C Q$ method for fixed point iteration processes, Nonlinear Anal. TMA., 64 (2006), 2400-2411.  doi: 10.1016/j.na.2005.08.018.

[37]

E. Zeidler, Nonlinear Functional Analysis and Its Applications I, Springer-Verlag, New York, 1986. doi: 10.1007/978-1-4612-4838-5.

show all references

References:
[1]

P. N. Anh, A hybrid extragradient method extended to fixed point problems and equilibrium problems, Optim., 62 (2013), 271-283.  doi: 10.1080/02331934.2011.607497.

[2]

G. BigiM. CastellaniM. Pappalardo and M. Passacantando, Existence and solution methods for equilibria, Eur. J. Oper. Res., 227 (2013), 1-11.  doi: 10.1016/j.ejor.2012.11.037.

[3]

E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student, 63 (1994), 127-149. 

[4]

P. L. Combettes and A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal., 6 (2005), 117-136. 

[5]

J. ContrerasM. Klusch and J. B. Krawczyk, Numerical solution to Nash-Cournot equilibria in coupled constraint electricity markets, IEEE Trans. Power Syst., 19 (2004), 195-206. 

[6]

B. V. Dinh and D. S. Kim, Extragradient algorithms for equilibrium problems and symmetric generalized hybrid mappings, Optim. Lett., 11 (2016), 537-553.  doi: 10.1007/s11590-016-1025-5.

[7]

B. V. Dinh and L. D. Muu, A projection algorithm for solving pseudomonotone equilibrium problems and it's application to a class of bilevel equilibria, Optim., 64 (2015), 559-575.  doi: 10.1080/02331934.2013.773329.

[8]

B. V. DinhP. G. Hung and L. D. Muu, Bilevel optimization as a regularization approach to pseudomonotone equilibrium problems, Numer. Funct. Anal. Optim., 35 (2014), 539-563.  doi: 10.1080/01630563.2013.813857.

[9]

B. V. Dinh and L. D. Muu, On penalty and gap function methods for bilevel equilibrium problems, J. Appl. Math., (2011) DOI: 10.1155/2011/646452. doi: 10.1155/2011/646452.

[10]

F. Facchinei and J. S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Springer, New York, 2003.

[11]

A. Genel and J. Lindenstrass, An example concerning fixed points, Isarel J. Math., 22 (1975), 81-86.  doi: 10.1007/BF02757276.

[12]

D. V. HieuL. D. Muu and P. K. Anh, Parallel hybrid extragradient methods for pseudomonotone equilibrium problems and nonexpansive mappings, Numer. Algor., 73 (2016), 197-217.  doi: 10.1007/s11075-015-0092-5.

[13]

M. HojoT. Suzuki and W. Takahashi, Fixed point theorems and convergence theorems for generalized hybrid non-self mappings in Hilbert spaces, J. Nonlinear Convex Anal., 14 (2013), 363-376. 

[14]

H. Iiduka, Fixed point optimization algorithm and its application to power control in CDMA data networks, Math. Program., Ser. A, 133 (2012), 227-242.  doi: 10.1007/s10107-010-0427-x.

[15]

S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 40 (1974), 147-150.  doi: 10.2307/2039245.

[16]

S. Itoh and W. Takahashi, The common fixed point theory of single-valued mappings and multi-valued mappings, Pacific J. Math., 79 (1978), 493-508. 

[17]

T. Kawasaki and W. Takahashi, Existence and mean approximation of fixed points of generalized hybrid mappings in Hilbert spaces, J. Nonlinear Convex Anal., 14 (2013), 71-87. 

[18]

F. Kohsaka and W. Takahashi, Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces, Arch. Math., 91 (2008), 166-177.  doi: 10.1007/s00013-008-2545-8.

[19]

I. V. Konnov, Combined Relaxation Methods for Variational Inequalities, Lecture Notes in Economics and Mathematical System, 495 (2001), Springer, Berlin. doi: 10.1007/978-3-642-56886-2.

[20]

G. M. Korpelevich, The extragradient method for finding saddle points and other problems, Matekon, 12 (1976), 747-756. 

[21]

W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506-510.  doi: 10.2307/2032162.

[22]

F. Moradlou and Al izadeh, Strong convergence theorem by a new iterative method for equilibrium problems and symmetric generalized hybrid mappings, Mediterr. J. Math., 13 (2016), 379-390.  doi: 10.1007/s00009-014-0462-6.

[23]

A. Moudafi, Proximal point algorithm extended to equilibrium problems, J. Nat. Geom., 15 (1999), 91-100. 

[24]

L. D. Muu and W. Oettli, Convergence of an adaptive penalty scheme for finding constrained equilibria, Nonlinear Anal.: TMA., 18 (1992), 1159-1166.  doi: 10.1016/0362-546X(92)90159-C.

[25]

L. D. Muu and T. D. Quoc, Regularization algorithms for solving monotone Ky Fan inequalities with application to a Nash-Cournot equilibrium model, J. Optim. Theory Appl., 142 (2009), 185-204.  doi: 10.1007/s10957-009-9529-0.

[26] R. T. Rockafellar, Convex Analysis, Princeton University Press, 1970. 
[27]

J. Schu, Weak and strong convergence to fixed points of asymptotically noexpansive mappings, Bulletin of the Australian Math. Soc., 43 (1991), 153-159.  doi: 10.1017/S0004972700028884.

[28]

A. Tada and W. Takahashi, Weak and strong convergence theorem for nonexpansive mapping and equilibrium problem, J. Optim. Theory Appl., 133 (2007), 359-370.  doi: 10.1007/s10957-007-9187-z.

[29]

W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl., 118 (2003), 417-428.  doi: 10.1023/A:1025407607560.

[30]

W. TakahashiN. C. Wong and J. C. Yao, Fixed point theorems for new generalized hybrid mappings in Hilbert spaces and applications, Taiwanese J. Math., 17 (2013), 1597-1611.  doi: 10.11650/tjm.17.2013.2921.

[31]

W. Takahashi, Fixed point theorems for new nonlinear mappings in a Hilbert space, J. Nonlinear Convex Anal., 11 (2010), 79-88. 

[32]

D. Q. TranL. M. Dung and V. H. Nguyen, Extragradient algorithms extended to equilibrium problems, Optim., 57 (2008), 749-776.  doi: 10.1080/02331930601122876.

[33]

N. N. TamJ. C. Yao and N. D. Yen, Solution methods for pseudomonotone variational inequalities, J. Optim. Theory Appl., 38 (2008), 253-273.  doi: 10.1007/s10957-008-9376-4.

[34]

P. T. VuongJ. J. Strodiot and V. H. Nguyen, Extragradient methods and linesearch algorithms for solving Ky Fan inequalities and fixed point problems, J. Optim. Theory Appl., 155 (2013), 605-627.  doi: 10.1007/s10957-012-0085-7.

[35]

H. K. Xu, A variable Krasnosel'ski$\mathop {\rm{i}}\limits^ \vee$-Mann algorithm and the multiple-set split feasibility problem, Inverse Problems, 22 (2006), 2021-2034.  doi: 10.1088/0266-5611/22/6/007.

[36]

C. M. Yanes and H. K. Xu, Strong convergence of the $C Q$ method for fixed point iteration processes, Nonlinear Anal. TMA., 64 (2006), 2400-2411.  doi: 10.1016/j.na.2005.08.018.

[37]

E. Zeidler, Nonlinear Functional Analysis and Its Applications I, Springer-Verlag, New York, 1986. doi: 10.1007/978-1-4612-4838-5.

Table 1.  Results computed with Algorithm 2
N.P Size (n) Average Times Average Iterations
10 5 2.3766 152
10 10 4.2141 223
10 20 6.7813 457
10 30 10.5266 515
10 50 17.4891 567
10 100 29.2406 674
N.P Size (n) Average Times Average Iterations
10 5 2.3766 152
10 10 4.2141 223
10 20 6.7813 457
10 30 10.5266 515
10 50 17.4891 567
10 100 29.2406 674
Table 2.  Results computed with Algorithm 3
N.P Size (n) Average Times Average Iterations
10 5 2.4656 99
10 10 4.1422 132
10 20 6.6375 164
10 30 8.0672 170
10 50 11.8828 192
10 100 21.4953 210
N.P Size (n) Average Times Average Iterations
10 5 2.4656 99
10 10 4.1422 132
10 20 6.6375 164
10 30 8.0672 170
10 50 11.8828 192
10 100 21.4953 210
Table 3.  Results computed with Algorithm 1 in [6]
N.P Size (n) Average Times Average Iterations
10 5 23.2484 826
10 10 34.7438 1445
10 20 87.1016 2346
10 30 157.5781 2715
10 50 255.4578 3839
N.P Size (n) Average Times Average Iterations
10 5 23.2484 826
10 10 34.7438 1445
10 20 87.1016 2346
10 30 157.5781 2715
10 50 255.4578 3839
Table 4.  Results computed with Algorithm 2 in [6]
N.P Size (n) Average Times Average Iterations
10 5 38.5938 904
10 10 106.3172 2242
10 20 163.1266 3050
10 30 250.9313 3001
10 50 359.1094 3592
N.P Size (n) Average Times Average Iterations
10 5 38.5938 904
10 10 106.3172 2242
10 20 163.1266 3050
10 30 250.9313 3001
10 50 359.1094 3592
[1]

Ouayl Chadli, Gayatri Pany, Ram N. Mohapatra. Existence and iterative approximation method for solving mixed equilibrium problem under generalized monotonicity in Banach spaces. Numerical Algebra, Control and Optimization, 2020, 10 (1) : 75-92. doi: 10.3934/naco.2019034

[2]

Biao Qu, Naihua Xiu. A relaxed extragradient-like method for a class of constrained optimization problem. Journal of Industrial and Management Optimization, 2007, 3 (4) : 645-654. doi: 10.3934/jimo.2007.3.645

[3]

Yekini Shehu, Olaniyi Iyiola. On a modified extragradient method for variational inequality problem with application to industrial electricity production. Journal of Industrial and Management Optimization, 2019, 15 (1) : 319-342. doi: 10.3934/jimo.2018045

[4]

Emeka Chigaemezu Godwin, Adeolu Taiwo, Oluwatosin Temitope Mewomo. Iterative method for solving split common fixed point problem of asymptotically demicontractive mappings in Hilbert spaces. Numerical Algebra, Control and Optimization, 2022  doi: 10.3934/naco.2022005

[5]

Lateef Olakunle Jolaoso, Maggie Aphane. Bregman subgradient extragradient method with monotone self-adjustment stepsize for solving pseudo-monotone variational inequalities and fixed point problems. Journal of Industrial and Management Optimization, 2022, 18 (2) : 773-794. doi: 10.3934/jimo.2020178

[6]

Yibing Lv, Tiesong Hu, Jianlin Jiang. Penalty method-based equilibrium point approach for solving the linear bilevel multiobjective programming problem. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : 1743-1755. doi: 10.3934/dcdss.2020102

[7]

Francis Akutsah, Akindele Adebayo Mebawondu, Hammed Anuoluwapo Abass, Ojen Kumar Narain. A self adaptive method for solving a class of bilevel variational inequalities with split variational inequality and composed fixed point problem constraints in Hilbert spaces. Numerical Algebra, Control and Optimization, 2021  doi: 10.3934/naco.2021046

[8]

Zhongyi Huang. Tailored finite point method for the interface problem. Networks and Heterogeneous Media, 2009, 4 (1) : 91-106. doi: 10.3934/nhm.2009.4.91

[9]

Jeffrey W. Lyons. An application of an avery type fixed point theorem to a second order antiperiodic boundary value problem. Conference Publications, 2015, 2015 (special) : 775-782. doi: 10.3934/proc.2015.0775

[10]

Mohammad Eslamian, Ahmad Kamandi. A novel algorithm for approximating common solution of a system of monotone inclusion problems and common fixed point problem. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021210

[11]

Xiaona Fan, Li Jiang, Mengsi Li. Homotopy method for solving generalized Nash equilibrium problem with equality and inequality constraints. Journal of Industrial and Management Optimization, 2019, 15 (4) : 1795-1807. doi: 10.3934/jimo.2018123

[12]

Guirong Pan, Bing Xue, Hongchun Sun. An optimization model and method for supply chain equilibrium management problem. Mathematical Foundations of Computing, 2022, 5 (2) : 145-156. doi: 10.3934/mfc.2022001

[13]

Qinglong Zhou, Yongchao Zhang. Analytic results for the linear stability of the equilibrium point in Robe's restricted elliptic three-body problem. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1763-1787. doi: 10.3934/dcds.2017074

[14]

Yue Zheng, Zhongping Wan, Shihui Jia, Guangmin Wang. A new method for strong-weak linear bilevel programming problem. Journal of Industrial and Management Optimization, 2015, 11 (2) : 529-547. doi: 10.3934/jimo.2015.11.529

[15]

Ming Chen, Chongchao Huang. A power penalty method for the general traffic assignment problem with elastic demand. Journal of Industrial and Management Optimization, 2014, 10 (4) : 1019-1030. doi: 10.3934/jimo.2014.10.1019

[16]

Marek Rychlik. The Equichordal Point Problem. Electronic Research Announcements, 1996, 2: 108-123.

[17]

Andrei V. Dmitruk, Nikolai P. Osmolovski. Necessary conditions for a weak minimum in a general optimal control problem with integral equations on a variable time interval. Mathematical Control and Related Fields, 2017, 7 (4) : 507-535. doi: 10.3934/mcrf.2017019

[18]

Tingting Li, Ziheng Xu, Shengjun Fan. General time interval multidimensional BSDEs with generators satisfying a weak stochastic-monotonicity condition. Probability, Uncertainty and Quantitative Risk, 2021, 6 (4) : 301-318. doi: 10.3934/puqr.2021015

[19]

Thi Phuong Dong Nguyen, Jean Jacques Strodiot, Thi Thu Van Nguyen, Van Hien Nguyen. A family of extragradient methods for solving equilibrium problems. Journal of Industrial and Management Optimization, 2015, 11 (2) : 619-630. doi: 10.3934/jimo.2015.11.619

[20]

Jun Lai, Ming Li, Peijun Li, Wei Li. A fast direct imaging method for the inverse obstacle scattering problem with nonlinear point scatterers. Inverse Problems and Imaging, 2018, 12 (3) : 635-665. doi: 10.3934/ipi.2018027

 Impact Factor: 

Metrics

  • PDF downloads (174)
  • HTML views (127)
  • Cited by (0)

Other articles
by authors

[Back to Top]