• Previous Article
    Global optimality conditions and duality theorems for robust optimal solutions of optimization problems with data uncertainty, using underestimators
  • NACO Home
  • This Issue
  • Next Article
    Weak convergence theorems for symmetric generalized hybrid mappings and equilibrium problems
March  2022, 12(1): 79-91. doi: 10.3934/naco.2021052

Measuring efficiency of a recycling production system with imprecise data

1. 

Department of Applied Mathematics, National Chiayi University, Chiayi, Taiwan

2. 

Department of Industrial Engineering and Engineering Management, National Tsing Hua University, Hsinchu, Taiwan

3. 

Graduate Institute of Human Resource and Knowledge Management, National Kaohsiung Normal University, Kaohsiung, Taiwan

* Corresponding author: Cheng-Feng Hu

Received  March 2020 Revised  October 2021 Published  March 2022 Early access  November 2021

Fund Project: The first author is supported by MOST grant 109-2221-E-415-010

Resources scarcity and environmental degradation have made sustainable resource utilization and environmental protection worldwide. A circular economy system considers economic production activities as closed-loop feedback cycles in which resources are used sustainably and cyclically. Improving the eco-efficiency of the circular economy system has both theoretical value and practical meaning. In this work, the efficiency measurement model of the circular economy system with imprecise data based on network data envelopment analysis is proposed. The two-level mathematical programming approach is employed for measuring the system and process efficiencies. The lower and upper bounds of the efficiencies scores are calculated by transformed conventional one-level linear programs so that the existing solution methods can be applied. The proposed method is applied to assess the circular economy system of EU countries. Our results show that most countries have large difference among fuzzy efficiencies between the production efficiency and recycling efficiency stages, which reveals the source that causes the low efficiency of the circular economy system.

Citation: Cheng-Feng Hu, Hsiao-Fan Wang, Tingyang Liu. Measuring efficiency of a recycling production system with imprecise data. Numerical Algebra, Control and Optimization, 2022, 12 (1) : 79-91. doi: 10.3934/naco.2021052
References:
[1]

L. CastelliR. Pesenti and W. Ukovich, DEA-like models for the efficiency evaluation of hierarchically structured units, Eur. J. Oper. Res., 154 (2004), 465-476.  doi: 10.1016/S0377-2217(03)00182-6.

[2]

A. Charnes and W. W. Cooper, Programming with linear fractional functionals, Nav. Res. Logist. Q., 9 (1962), 181-186.  doi: 10.1002/nav.3800090303.

[3]

A. CharnesW. W. Cooper and E. Rhodes, Measuring the efficiency of decision making units, Eur. J. Oper. Res., 2 (1978), 429-444.  doi: 10.1016/0377-2217(78)90138-8.

[4]

Y. ChenJ. DuS. H. David and J. Zhu, DEA model with shared resources and efficiency decomposition, Eur. J. Oper. Res., 207 (2010), 339-349.  doi: 10.1016/j.ejor.2010.03.031.

[5]

W. ChenW. J. LiuY. GengS. OhnishiL. SunW. Y. HanX. Tian and S. Z. Zhong, Life cycle based emergy analysis on China's cement production, J. Clean. Prod., 131 (2016), 1-8. 

[6]

W. D. Cook and L. M. Seiford, Data envelopment analysis (DEA)-Thirty years on, Eur. J. Oper. Res., 192 (2009), 1-17.  doi: 10.1016/j.ejor.2008.01.032.

[7]

R. F$\ddot{a}$re and S. Grosskopf, Network DEA, Socio. Econ. Plann. Sci., 4 (2000), 35-49. 

[8]

C. Kao and S. T. Liu, Fuzzy efficiency measures in data envelopment analysis, Fuzzy Sets Syst., 113 (2000), 427-437. 

[9]

H. MikulcicH. CabezasM. Vujanovic and N. Duic, Environmental assessment of different cement manufacturing processes based on emergy and ecological footprint analysis, J. Clean. Prod., 130 (2016), 1-25. 

[10] D. Pearce and R. K. Turner, Economics of Natural Resources and the Environment, The Johns Hopkins University Press, Baltimore, 1998. 
[11]

B. Simon, What are the most significant aspects of supporting the circular economy in the plastic industry?, Resources, Conserv. Recy., 141 (2019), 299-300. 

[12]

L. SunH. LiL. DongK. FangJ.Z. RenY. GengM. FujiiW. ZhangN. Zhang and Z. Liu, Eco-benefits assessment on urban industrial symbiosis based on material flows analysis and emergy evaluation approach: a case of Liuzhou city, China. Resources, Conserv. Recy., 119 (2017), 78-88. 

[13]

H. WuY. LiuQ. Xia and W. Zhu, Measuring efficiency of recycling systems based on data envelopment analysis (DEA) network: A case from Chinese provincial circular economy, Environ. Eng. Manag. J., 13 (2014), 1089-1099. 

[14]

L. A. Zadeh, Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets Syst., 1 (1978), 3-28.  doi: 10.1016/0165-0114(78)90029-5.

[15]

H. Z. Zimmermann, Fuzzy Set Theory and Its Applications, Kluwer-Nijhoff, Boston, 1996. doi: 10.1007/978-94-015-7153-1.

show all references

References:
[1]

L. CastelliR. Pesenti and W. Ukovich, DEA-like models for the efficiency evaluation of hierarchically structured units, Eur. J. Oper. Res., 154 (2004), 465-476.  doi: 10.1016/S0377-2217(03)00182-6.

[2]

A. Charnes and W. W. Cooper, Programming with linear fractional functionals, Nav. Res. Logist. Q., 9 (1962), 181-186.  doi: 10.1002/nav.3800090303.

[3]

A. CharnesW. W. Cooper and E. Rhodes, Measuring the efficiency of decision making units, Eur. J. Oper. Res., 2 (1978), 429-444.  doi: 10.1016/0377-2217(78)90138-8.

[4]

Y. ChenJ. DuS. H. David and J. Zhu, DEA model with shared resources and efficiency decomposition, Eur. J. Oper. Res., 207 (2010), 339-349.  doi: 10.1016/j.ejor.2010.03.031.

[5]

W. ChenW. J. LiuY. GengS. OhnishiL. SunW. Y. HanX. Tian and S. Z. Zhong, Life cycle based emergy analysis on China's cement production, J. Clean. Prod., 131 (2016), 1-8. 

[6]

W. D. Cook and L. M. Seiford, Data envelopment analysis (DEA)-Thirty years on, Eur. J. Oper. Res., 192 (2009), 1-17.  doi: 10.1016/j.ejor.2008.01.032.

[7]

R. F$\ddot{a}$re and S. Grosskopf, Network DEA, Socio. Econ. Plann. Sci., 4 (2000), 35-49. 

[8]

C. Kao and S. T. Liu, Fuzzy efficiency measures in data envelopment analysis, Fuzzy Sets Syst., 113 (2000), 427-437. 

[9]

H. MikulcicH. CabezasM. Vujanovic and N. Duic, Environmental assessment of different cement manufacturing processes based on emergy and ecological footprint analysis, J. Clean. Prod., 130 (2016), 1-25. 

[10] D. Pearce and R. K. Turner, Economics of Natural Resources and the Environment, The Johns Hopkins University Press, Baltimore, 1998. 
[11]

B. Simon, What are the most significant aspects of supporting the circular economy in the plastic industry?, Resources, Conserv. Recy., 141 (2019), 299-300. 

[12]

L. SunH. LiL. DongK. FangJ.Z. RenY. GengM. FujiiW. ZhangN. Zhang and Z. Liu, Eco-benefits assessment on urban industrial symbiosis based on material flows analysis and emergy evaluation approach: a case of Liuzhou city, China. Resources, Conserv. Recy., 119 (2017), 78-88. 

[13]

H. WuY. LiuQ. Xia and W. Zhu, Measuring efficiency of recycling systems based on data envelopment analysis (DEA) network: A case from Chinese provincial circular economy, Environ. Eng. Manag. J., 13 (2014), 1089-1099. 

[14]

L. A. Zadeh, Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets Syst., 1 (1978), 3-28.  doi: 10.1016/0165-0114(78)90029-5.

[15]

H. Z. Zimmermann, Fuzzy Set Theory and Its Applications, Kluwer-Nijhoff, Boston, 1996. doi: 10.1007/978-94-015-7153-1.

Figure 1.  A recycling production system
Figure 2.  Notations of a recycling production system
Table 1.  Data set for assessing the recycling production system of EU countries
DMU $ X^1_1 $ $ X^1_2 $ $ X^1_3 $ $ Y^{1g} $ $ Y^{1b} $ $ X^2 $ $ Y^{2b}_1 $ $ Y^{2b}_2 $ $ Y^{2g}_1 $ $ Y^{2g}_2 $ $ Y^{2g}_3 $
BE $ 5004 $ $ 109635 $ $ 36332 $ $ 46000 $ $ 63150004 $ $ 2246 $ $ 401821505 $ $ 260944420 $ $ 4855292916 $ $ 0 $ $ 796941524 $
BG $ 4025 $ $ 9889 $ $ 9662 $ $ 20900 $ $ 120510053 $ $ 262 $ $ 11377402360 $ $ 1228940 $ $ 624743431 $ $ 0 $ $ 47630543 $
CZ $ 5387 $ $ 48753 $ $ 24880 $ $ 34200 $ $ 25380325 $ $ 489 $ $ 421402923 $ $ 8969823 $ $ 1256506220 $ $ 736788139 $ $ 114365359 $
DK $ 3024 $ $ 62642 $ $ 14449 $ $ 49300 $ $ 20981701 $ $ 73 $ $ 611036025 $ $ 453589 $ $ 1077685765 $ $ 0 $ $ 408994682 $
DE $ 43294 $ $ 696913 $ $ 216447 $ $ 49800 $ $ 400049839 $ $ 5139 $ $ 7258425559 $ $ 474079860 $ $ 17091404085 $ $ 10641085528 $ $ 4539988852 $
EE $ 694 $ $ 5212 $ $ 2818 $ $ 30200 $ $ 24277641 $ $ 39 $ $ 1571046418 $ $ 7207 $ $ 523501743 $ $ 271321686 $ $ 61887076 $
IE $ 2248 $ $ 97003 $ $ 11609 $ $ 69100 $ $ 15483387 $ $ 11 $ $ 595176663 $ $ 3974931 $ $ 163521509 $ $ 712096348 $ $ 73569252 $
EL $ 4906 $ $ 22630 $ $ 16702 $ $ 27400 $ $ 69009312 $ $ 1045 $ $ 6101405554 $ $ 2254867 $ $ 223834033 $ $ 559291350 $ $ 14145383 $
ES $ 23016 $ $ 247385 $ $ 82497 $ $ 37200 $ $ 128946782 $ $ 5561 $ $ 6917730969 $ $ 1630152 $ $ 4782727890 $ $ 729903060 $ $ 462686172 $
FR $ 30319 $ $ 539810 $ $ 147158 $ $ 43200 $ $ 323467567 $ $ 10927(p) $ $ 8912319950 $ $ 529931991 $ $ 17805492324 $ $ 3347460780 $ $ 1751551681 $
HR $ 1833 $ $ 10352 $ $ 6639 $ $ 23800 $ $ 5280553 $ $ 3 $ $ 252644927 $ $ 8025 $ $ 248979558 $ $ 21330946 $ $ 5091818 $
IT $ 25584 $ $ 318657 $ $ 115930 $ $ 37600 $ $ 163997388 $ $ 10323 $ $ 2330759325 $ $ 448068861 $ $ 12940757588 $ $ 16749969 $ $ 663403006 $
CY $ 611 $ $ 3610 $ $ 1758 $ $ 36100 $ $ 3384016 $ $ 37 $ $ 195647721 $ $ 0 $ $ 35308927 $ $ 94608345 $ $ 12836602 $
LV $ 1008 $ $ 5019 $ $ 3820 $ $ 26200 $ $ 2531726 $ $ 86 $ $ 51514453 $ $ 27299 $ $ 181524359 $ $ 2877570 $ $ 17228886 $
LT $ 1481 $ $ 8090 $ $ 5108 $ $ 30700 $ $ 6645689 $ $ 146 $ $ 376219111 $ $ 265115 $ $ 222175413 $ $ 27546012 $ $ 38363239 $
LU $ 281 $ $ 10079 $ $ 4038 $ $ 105400 $ $ 10129884 $ $ 136 $ $ 394682009 $ $ 447 $ $ 352026252 $ $ 244913566 $ $ 21366130 $
HU $ 4686 $ $ 24195 $ $ 17865 $ $ 28300 $ $ 15908526 $ $ 159 $ $ 544534135 $ $ 9173793 $ $ 861341728 $ $ 58137346 $ $ 117665638 $
MT $ 212 $ $ 2613 $ $ 583 $ $ 40100 $ $ 1971253 $ $ 58 $ $ 33840198 $ $ 729659 $ $ 37642029 $ $ 124913458 $ $ 0 $
NL $ 9050 $ $ 154915 $ $ 49517 $ $ 52800 $ $ 141027997 $ $ 3827 $ $ 6484656382 $ $ 123312495 $ $ 6429380745 $ $ 0 $ $ 1065450090 $
AT $ 4535 $ $ 90187 $ $ 28127 $ $ 49000 $ $ 61226583 $ $ 174 $ $ 2809451363 $ $ \tilde{Y}^{2b}_2 $ $ 2264108063 $ $ 675844441 $ $ \tilde{Y}^{2g}_3 $
PL $ 18393 $ $ 84961 $ $ 66652 $ $ 28300 $ $ 181990641 $ $ 372 $ $ 5095006125 $ $ 63893549 $ $ 8399307294 $ $ 4036605469 $ $ 604251699 $
PT $ 5207 $ $ 31296 $ $ 16114 $ $ 29600 $ $ 14734417 $ $ 425.5(e) $ $ 510697523 $ $ 3546142 $ $ 640596720 $ $ 140172510 $ $ 178428819 $
RO $ 8939 $ $ 43109 $ $ 22280 $ $ 22900 $ $ 177557398 $ $ 508 $ $ 16702885666 $ $ 10101348 $ $ 714524681 $ $ 77559190 $ $ 250668909 $
SI $ 996 $ $ 7859 $ $ 4875 $ $ 32900 $ $ 5517787 $ $ 42 $ $ 38252271 $ $ 4285174 $ $ 332376636 $ $ 150325015 $ $ 26539590 $
SK $ 2762 $ $ 19021 $ $ 10418 $ $ 32000 $ $ 10606352 $ $ 319.7(p) $ $ 506588801 $ $ 4865030 $ $ 424682144 $ $ 49836276 $ $ 74662989 $
FI $ 2687 $ $ 51490 $ $ 25248 $ $ 43400 $ $ 122869413 $ $ 75 $ $ 10816368847 $ $ 5368598 $ $ 908084245 $ $ 0 $ $ 557119580 $
SE $ 5245 $ $ 123749 $ $ 32590 $ $ 50800 $ $ 141622198 $ $ 760 $ $ 10806010637 $ $ 22813777 $ $ 1702475279 $ $ 694274083 $ $ 936645999 $
UK $ 33693 $ $ 437140 $ $ 133688 $ $ 43800 $ $ 277272474 $ $ 13601 $ $ 10410809602 $ $ 735540574 $ $ 13457214835 $ $ 2175093717 $ $ 948588194 $
1. BE: Belgium; BG: Bulgaria; CZ: Czechia; DK: Denmark; DE: Germany; EE: Estonia; IE: Ireland; EL: Greece; ES: Spain; FR: France; HR: Croatia; IT: Italy; CY: Cyprus; LV: Latvia; LT: Lithuania; LU: Luxembourg; HU: Hungary; MT: Malta; NL: Netherlands; AT: Austria; PL: Poland; PT: Portugal; RO: Romania; SI: Slovenia; SK: Slovakia; FI: Finland; SE: Sweden; UK: United Kingdom
2. Available flags: p: provisional; e: estimated
DMU $ X^1_1 $ $ X^1_2 $ $ X^1_3 $ $ Y^{1g} $ $ Y^{1b} $ $ X^2 $ $ Y^{2b}_1 $ $ Y^{2b}_2 $ $ Y^{2g}_1 $ $ Y^{2g}_2 $ $ Y^{2g}_3 $
BE $ 5004 $ $ 109635 $ $ 36332 $ $ 46000 $ $ 63150004 $ $ 2246 $ $ 401821505 $ $ 260944420 $ $ 4855292916 $ $ 0 $ $ 796941524 $
BG $ 4025 $ $ 9889 $ $ 9662 $ $ 20900 $ $ 120510053 $ $ 262 $ $ 11377402360 $ $ 1228940 $ $ 624743431 $ $ 0 $ $ 47630543 $
CZ $ 5387 $ $ 48753 $ $ 24880 $ $ 34200 $ $ 25380325 $ $ 489 $ $ 421402923 $ $ 8969823 $ $ 1256506220 $ $ 736788139 $ $ 114365359 $
DK $ 3024 $ $ 62642 $ $ 14449 $ $ 49300 $ $ 20981701 $ $ 73 $ $ 611036025 $ $ 453589 $ $ 1077685765 $ $ 0 $ $ 408994682 $
DE $ 43294 $ $ 696913 $ $ 216447 $ $ 49800 $ $ 400049839 $ $ 5139 $ $ 7258425559 $ $ 474079860 $ $ 17091404085 $ $ 10641085528 $ $ 4539988852 $
EE $ 694 $ $ 5212 $ $ 2818 $ $ 30200 $ $ 24277641 $ $ 39 $ $ 1571046418 $ $ 7207 $ $ 523501743 $ $ 271321686 $ $ 61887076 $
IE $ 2248 $ $ 97003 $ $ 11609 $ $ 69100 $ $ 15483387 $ $ 11 $ $ 595176663 $ $ 3974931 $ $ 163521509 $ $ 712096348 $ $ 73569252 $
EL $ 4906 $ $ 22630 $ $ 16702 $ $ 27400 $ $ 69009312 $ $ 1045 $ $ 6101405554 $ $ 2254867 $ $ 223834033 $ $ 559291350 $ $ 14145383 $
ES $ 23016 $ $ 247385 $ $ 82497 $ $ 37200 $ $ 128946782 $ $ 5561 $ $ 6917730969 $ $ 1630152 $ $ 4782727890 $ $ 729903060 $ $ 462686172 $
FR $ 30319 $ $ 539810 $ $ 147158 $ $ 43200 $ $ 323467567 $ $ 10927(p) $ $ 8912319950 $ $ 529931991 $ $ 17805492324 $ $ 3347460780 $ $ 1751551681 $
HR $ 1833 $ $ 10352 $ $ 6639 $ $ 23800 $ $ 5280553 $ $ 3 $ $ 252644927 $ $ 8025 $ $ 248979558 $ $ 21330946 $ $ 5091818 $
IT $ 25584 $ $ 318657 $ $ 115930 $ $ 37600 $ $ 163997388 $ $ 10323 $ $ 2330759325 $ $ 448068861 $ $ 12940757588 $ $ 16749969 $ $ 663403006 $
CY $ 611 $ $ 3610 $ $ 1758 $ $ 36100 $ $ 3384016 $ $ 37 $ $ 195647721 $ $ 0 $ $ 35308927 $ $ 94608345 $ $ 12836602 $
LV $ 1008 $ $ 5019 $ $ 3820 $ $ 26200 $ $ 2531726 $ $ 86 $ $ 51514453 $ $ 27299 $ $ 181524359 $ $ 2877570 $ $ 17228886 $
LT $ 1481 $ $ 8090 $ $ 5108 $ $ 30700 $ $ 6645689 $ $ 146 $ $ 376219111 $ $ 265115 $ $ 222175413 $ $ 27546012 $ $ 38363239 $
LU $ 281 $ $ 10079 $ $ 4038 $ $ 105400 $ $ 10129884 $ $ 136 $ $ 394682009 $ $ 447 $ $ 352026252 $ $ 244913566 $ $ 21366130 $
HU $ 4686 $ $ 24195 $ $ 17865 $ $ 28300 $ $ 15908526 $ $ 159 $ $ 544534135 $ $ 9173793 $ $ 861341728 $ $ 58137346 $ $ 117665638 $
MT $ 212 $ $ 2613 $ $ 583 $ $ 40100 $ $ 1971253 $ $ 58 $ $ 33840198 $ $ 729659 $ $ 37642029 $ $ 124913458 $ $ 0 $
NL $ 9050 $ $ 154915 $ $ 49517 $ $ 52800 $ $ 141027997 $ $ 3827 $ $ 6484656382 $ $ 123312495 $ $ 6429380745 $ $ 0 $ $ 1065450090 $
AT $ 4535 $ $ 90187 $ $ 28127 $ $ 49000 $ $ 61226583 $ $ 174 $ $ 2809451363 $ $ \tilde{Y}^{2b}_2 $ $ 2264108063 $ $ 675844441 $ $ \tilde{Y}^{2g}_3 $
PL $ 18393 $ $ 84961 $ $ 66652 $ $ 28300 $ $ 181990641 $ $ 372 $ $ 5095006125 $ $ 63893549 $ $ 8399307294 $ $ 4036605469 $ $ 604251699 $
PT $ 5207 $ $ 31296 $ $ 16114 $ $ 29600 $ $ 14734417 $ $ 425.5(e) $ $ 510697523 $ $ 3546142 $ $ 640596720 $ $ 140172510 $ $ 178428819 $
RO $ 8939 $ $ 43109 $ $ 22280 $ $ 22900 $ $ 177557398 $ $ 508 $ $ 16702885666 $ $ 10101348 $ $ 714524681 $ $ 77559190 $ $ 250668909 $
SI $ 996 $ $ 7859 $ $ 4875 $ $ 32900 $ $ 5517787 $ $ 42 $ $ 38252271 $ $ 4285174 $ $ 332376636 $ $ 150325015 $ $ 26539590 $
SK $ 2762 $ $ 19021 $ $ 10418 $ $ 32000 $ $ 10606352 $ $ 319.7(p) $ $ 506588801 $ $ 4865030 $ $ 424682144 $ $ 49836276 $ $ 74662989 $
FI $ 2687 $ $ 51490 $ $ 25248 $ $ 43400 $ $ 122869413 $ $ 75 $ $ 10816368847 $ $ 5368598 $ $ 908084245 $ $ 0 $ $ 557119580 $
SE $ 5245 $ $ 123749 $ $ 32590 $ $ 50800 $ $ 141622198 $ $ 760 $ $ 10806010637 $ $ 22813777 $ $ 1702475279 $ $ 694274083 $ $ 936645999 $
UK $ 33693 $ $ 437140 $ $ 133688 $ $ 43800 $ $ 277272474 $ $ 13601 $ $ 10410809602 $ $ 735540574 $ $ 13457214835 $ $ 2175093717 $ $ 948588194 $
1. BE: Belgium; BG: Bulgaria; CZ: Czechia; DK: Denmark; DE: Germany; EE: Estonia; IE: Ireland; EL: Greece; ES: Spain; FR: France; HR: Croatia; IT: Italy; CY: Cyprus; LV: Latvia; LT: Lithuania; LU: Luxembourg; HU: Hungary; MT: Malta; NL: Netherlands; AT: Austria; PL: Poland; PT: Portugal; RO: Romania; SI: Slovenia; SK: Slovakia; FI: Finland; SE: Sweden; UK: United Kingdom
2. Available flags: p: provisional; e: estimated
Table 2.  $ \alpha $-cuts of the fuzzy system efficiencies
DMU System Sub-system 1 Sub-system 2
Belgium (0.4029, 0.4185) (0.0014, 0.0018) (0.9593, 1.0000)
Bulgaria (0.1067, 0.1376) (0.1077, 0.1377) (0.0272, 0.0309)
Czechia (0.3176, 0.3177) (0.0678, 0.0734) (0.9328, 0.9433)
Denmark (0.4708, 0.5354) (0.0907, 0.1084) (1.0000, 1.0000)
Germany (0.2082, 0.2963) (0.0024, 0.0032) (0.5834, 0.6320)
Estonia (0.6148, 0.6150) (0.2746, 0.2897) (0.9908, 1.0000)
Ireland (0.6397, 0.6433) (0.3472, 0.3494) (1.0000, 1.0000)
Greece (0.0768, 0.0788) (0.0756, 0.0789) (0.0025, 0.0031)
Spain (0.0159, 0.0252) (0.0285, 0.0433) (0.0155, 0.0243)
France (0.0823, 0.0839) (0.0006, 0.0006) (0.1034, 0.1038)
Croatia (1.0000, 1.0000) (1.0000, 1.0000) (1.0000, 1.0000)
Italy (0.3056, 0.3398) (0.0079, 0.0085) (0.7341, 0.8466)
Cyprus (0.9489, 1.0000) (1.0000, 1.0000) (0.9942, 1.0000)
Latvia (1.0000, 1.0000) (1.0000, 1.0000) (1.0000, 1.0000)
Lithuania (0.2470, 0.2473) (0.2472, 0.2473) (0.0243, 0.0720)
Luxembourg (1.0000, 1.0000) (1.0000, 1.0000) (1.0000, 1.0000)
Hungary (0.1631, 0.1789) (0.0167, 0.0277) (0.2482, 0.2539)
Malta (0.9553, 1.0000) (0.9228, 1.0000) (0.9768, 1.0000)
Netherlands (0.0257, 0.0544) (0.0184, 0.0407) (0.0488, 0.0603)
Austria (0.1721, 0.1732) (0.0723, 0.0746) (0.1936, 0.1965)
Poland (0.4481, 0.4577) (0.0058, 0.0063) (1.0000, 1.0000)
Portugal (0.0616, 0.0839) (0.0038, 0.0047) (0.1947, 0.1913)
Romania (0.0346, 0.0680) (0.0043, 0.0085) (0.0689, 0.0732)
Slovenia (0.6530, 0.6577) (0.3634, 0.3735) (1.0000, 1.0000)
Slovakia (0.1095, 0.1096) (0.1096, 0.1096) (0.0637, 0.0639)
Finland (0.3443, 0.5039) (0.0065, 0.0079) (0.8635, 1.0000)
Sweden (0.1767, 0.1825) (0.0527, 0.0636) (0.1865, 0.2012)
United Kingdom (0.0291, 0.0298) (0.0022, 0.0029) (0.0320, 0.0321)
DMU System Sub-system 1 Sub-system 2
Belgium (0.4029, 0.4185) (0.0014, 0.0018) (0.9593, 1.0000)
Bulgaria (0.1067, 0.1376) (0.1077, 0.1377) (0.0272, 0.0309)
Czechia (0.3176, 0.3177) (0.0678, 0.0734) (0.9328, 0.9433)
Denmark (0.4708, 0.5354) (0.0907, 0.1084) (1.0000, 1.0000)
Germany (0.2082, 0.2963) (0.0024, 0.0032) (0.5834, 0.6320)
Estonia (0.6148, 0.6150) (0.2746, 0.2897) (0.9908, 1.0000)
Ireland (0.6397, 0.6433) (0.3472, 0.3494) (1.0000, 1.0000)
Greece (0.0768, 0.0788) (0.0756, 0.0789) (0.0025, 0.0031)
Spain (0.0159, 0.0252) (0.0285, 0.0433) (0.0155, 0.0243)
France (0.0823, 0.0839) (0.0006, 0.0006) (0.1034, 0.1038)
Croatia (1.0000, 1.0000) (1.0000, 1.0000) (1.0000, 1.0000)
Italy (0.3056, 0.3398) (0.0079, 0.0085) (0.7341, 0.8466)
Cyprus (0.9489, 1.0000) (1.0000, 1.0000) (0.9942, 1.0000)
Latvia (1.0000, 1.0000) (1.0000, 1.0000) (1.0000, 1.0000)
Lithuania (0.2470, 0.2473) (0.2472, 0.2473) (0.0243, 0.0720)
Luxembourg (1.0000, 1.0000) (1.0000, 1.0000) (1.0000, 1.0000)
Hungary (0.1631, 0.1789) (0.0167, 0.0277) (0.2482, 0.2539)
Malta (0.9553, 1.0000) (0.9228, 1.0000) (0.9768, 1.0000)
Netherlands (0.0257, 0.0544) (0.0184, 0.0407) (0.0488, 0.0603)
Austria (0.1721, 0.1732) (0.0723, 0.0746) (0.1936, 0.1965)
Poland (0.4481, 0.4577) (0.0058, 0.0063) (1.0000, 1.0000)
Portugal (0.0616, 0.0839) (0.0038, 0.0047) (0.1947, 0.1913)
Romania (0.0346, 0.0680) (0.0043, 0.0085) (0.0689, 0.0732)
Slovenia (0.6530, 0.6577) (0.3634, 0.3735) (1.0000, 1.0000)
Slovakia (0.1095, 0.1096) (0.1096, 0.1096) (0.0637, 0.0639)
Finland (0.3443, 0.5039) (0.0065, 0.0079) (0.8635, 1.0000)
Sweden (0.1767, 0.1825) (0.0527, 0.0636) (0.1865, 0.2012)
United Kingdom (0.0291, 0.0298) (0.0022, 0.0029) (0.0320, 0.0321)
[1]

Cheng-Kai Hu, Fung-Bao Liu, Hong-Ming Chen, Cheng-Feng Hu. Network data envelopment analysis with fuzzy non-discretionary factors. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1795-1807. doi: 10.3934/jimo.2020046

[2]

Cheng-Kai Hu, Fung-Bao Liu, Cheng-Feng Hu. Efficiency measures in fuzzy data envelopment analysis with common weights. Journal of Industrial and Management Optimization, 2017, 13 (1) : 237-249. doi: 10.3934/jimo.2016014

[3]

Hasan Hosseini-Nasab, Vahid Ettehadi. Development of opened-network data envelopment analysis models under uncertainty. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022027

[4]

Habibe Zare Haghighi, Sajad Adeli, Farhad Hosseinzadeh Lotfi, Gholam Reza Jahanshahloo. Revenue congestion: An application of data envelopment analysis. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1311-1322. doi: 10.3934/jimo.2016.12.1311

[5]

Pooja Bansal, Aparna Mehra. Integrated dynamic interval data envelopment analysis in the presence of integer and negative data. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1339-1363. doi: 10.3934/jimo.2021023

[6]

Mahdi Mahdiloo, Abdollah Noorizadeh, Reza Farzipoor Saen. Developing a new data envelopment analysis model for customer value analysis. Journal of Industrial and Management Optimization, 2011, 7 (3) : 531-558. doi: 10.3934/jimo.2011.7.531

[7]

Mohammad Afzalinejad, Zahra Abbasi. A slacks-based model for dynamic data envelopment analysis. Journal of Industrial and Management Optimization, 2019, 15 (1) : 275-291. doi: 10.3934/jimo.2018043

[8]

Pooja Bansal. Sequential Malmquist-Luenberger productivity index for interval data envelopment analysis. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022058

[9]

Saber Saati, Adel Hatami-Marbini, Per J. Agrell, Madjid Tavana. A common set of weight approach using an ideal decision making unit in data envelopment analysis. Journal of Industrial and Management Optimization, 2012, 8 (3) : 623-637. doi: 10.3934/jimo.2012.8.623

[10]

Ali Hadi, Saeid Mehrabian. A two-stage data envelopment analysis approach to solve extended transportation problem with non-homogenous costs. Numerical Algebra, Control and Optimization, 2022  doi: 10.3934/naco.2022006

[11]

Junjie Peng, Ning Chen, Jiayang Dai, Weihua Gui. A goethite process modeling method by Asynchronous Fuzzy Cognitive Network based on an improved constrained chicken swarm optimization algorithm. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1269-1287. doi: 10.3934/jimo.2020021

[12]

Maolin Cheng, Zhun Cheng. A novel simultaneous grey model parameter optimization method and its application to predicting private car ownership and transportation economy. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022081

[13]

Behrouz Kheirfam, Guoqiang Wang. An infeasible full NT-step interior point method for circular optimization. Numerical Algebra, Control and Optimization, 2017, 7 (2) : 171-184. doi: 10.3934/naco.2017011

[14]

Seiyed Hadi Abtahi, Hamidreza Rahimi, Maryam Mosleh. Solving fuzzy volterra-fredholm integral equation by fuzzy artificial neural network. Mathematical Foundations of Computing, 2021, 4 (3) : 209-219. doi: 10.3934/mfc.2021013

[15]

Gang Chen, Zaiming Liu, Jingchuan Zhang. Analysis of strategic customer behavior in fuzzy queueing systems. Journal of Industrial and Management Optimization, 2020, 16 (1) : 371-386. doi: 10.3934/jimo.2018157

[16]

Anna Chiara Lai, Monica Motta. Stabilizability in optimization problems with unbounded data. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2447-2474. doi: 10.3934/dcds.2020371

[17]

Jingzhen Liu, Ka-Fai Cedric Yiu, Tak Kuen Siu, Wai-Ki Ching. Optimal insurance in a changing economy. Mathematical Control and Related Fields, 2014, 4 (2) : 187-202. doi: 10.3934/mcrf.2014.4.187

[18]

Yanqin Bai, Xuerui Gao, Guoqiang Wang. Primal-dual interior-point algorithms for convex quadratic circular cone optimization. Numerical Algebra, Control and Optimization, 2015, 5 (2) : 211-231. doi: 10.3934/naco.2015.5.211

[19]

Liu Hui, Lin Zhi, Waqas Ahmad. Network(graph) data research in the coordinate system. Mathematical Foundations of Computing, 2018, 1 (1) : 1-10. doi: 10.3934/mfc.2018001

[20]

King Hann Lim, Hong Hui Tan, Hendra G. Harno. Approximate greatest descent in neural network optimization. Numerical Algebra, Control and Optimization, 2018, 8 (3) : 327-336. doi: 10.3934/naco.2018021

 Impact Factor: 

Metrics

  • PDF downloads (142)
  • HTML views (142)
  • Cited by (0)

Other articles
by authors

[Back to Top]