[1]
|
A. Akkouche, A. Maidi and A. Aidene, Optimal control of partial differential equations based on the variational iteration method, Computers & Mathematics with Applications, 68 (2014), 622-631.
doi: 10.1016/j.camwa.2014.07.007.
|
[2]
|
AMPL Modeling Language for Mathematical Programming, Available from: http://www.ampl.com.
|
[3]
|
V. Barbu, Optimal Control of Variational Inequalities, Boston, Pitman Advanced Pub. Program, 1984.
doi: 9780080958767.
|
[4]
|
V. Barbu, Analysis and Control of Non Linear Infinite Dimensional Systems, Mathematics in Science and Engineering, Academic Press, 1993.
doi: 978-0-12-078145-4.
|
[5]
|
M. Bergounioux, Optimal control of semilinear elliptic obstacle problems, Journal of Nonlinear and Convex Analysis, 31 (2002), 25-39.
|
[6]
|
M. Bergounioux, Optimality Conditions For Optimal Control of Elliptic Problems Governed by Variational Inequalities, Rapport de Recherche, Université d'Orléans, 1995.
|
[7]
|
M. Bergounioux, Optimal control of an obstacle problem, Applied Mathematics and Optimization, 36 (1997), 147-172.
doi: 10.1007/s002459900058.
|
[8]
|
M. Bergounioux and F. Mignot, Control of variational inequalities and Lagrange multipliers, ESAIM, COCV, 5 (2000), 45-70.
doi: 10.1051/cocv:2000101.
|
[9]
|
M. Bergounioux and M. Haddou, A SQP-Augmented Lagrangian method for optimal control of semilinear elliptic variational inequalities, ISNM International Series of Numerical Mathematics, 143 (2003), 57-72.
doi: 10.1007/978-3-0348-8001-5_4.
|
[10]
|
M. Bergounioux and D. Tiba, General optimality conditions for constrained convex control problems, SIAM Journal on Control and Optimization, 34 (1994), 698-711.
doi: 10.1137/S0363012994261987.
|
[11]
|
M. Bergounioux, Optimal control of variational inequalities: A mathematical programming approach, International Federation for Information Processing. Springer, Boston, MA, (1996), 123–130.
doi: 10.1007/978-0-387-34922-0_11.
|
[12]
|
A. Bermudez and C. Saguez, Optimal control of variational inequalities: Optimality conditions and numerical methods, Free boundary problems: applicatons and theory, Research Notes in Mathematics, Pitman, Boston, 121 (1988), 478–487.
|
[13]
|
S. I. Birbil, S. H. Fang and J. Han, An entropic regularization approach for mathematical programs with equilibrium constraints, Computer and Operations Research, 31 (2004), 2249-2262.
doi: 10.1016/S0305-0548(03)00176-X.
|
[14]
|
A. Friedman, Variational Principles and Free-Boundray Problems, John Wiley & Sons, Inc. New York, 1982.
|
[15]
|
P. E. Gill, W. Murray, M. A. Sanders, A. Drud and E. Kalvelagen, GAMS/SNOPT: An SQP Algorithm for large-scale constrained optimization, 2000, Available from: http://www.gams.com/docs/solver/snopt.
doi: 10.1137/S1052623499350013.
|
[16]
|
M. Haddou, A new class of smoothing methods for mathematical programs with equilibrium constraints, An International Journal Pacific Journal of Optimization, 5 (2009), 87-95.
|
[17]
|
J. H. He and H. Latifizadeh, A general numerical algorithm for nonlinear differential equations by the variational iteration method, International Journal of Numerical Methods for Heat and Fluid Flow, 30 (2020), 4797-4810.
doi: 10.1108/HFF-01-2020-0029.
|
[18]
|
J. H. He, Lagrange crisis and generalized variational principle for 3D unsteady flow, International Journal of Numerical Methods for Heat and Fluid Flow, 30 (2020), 1189-1196.
|
[19]
|
M. A. Krasnosel'skii and Y. B. Rutickii, Convex Functions and Orlicz Spaces, Noordhoff, Groningen, 1996.
|
[20]
|
F. Mignot and J. P. Puel, Optimal control in some variational inequalities, SIAM Journal on Control and Optimization, 22 (1984), 466-476.
doi: 10.1137/0322028.
|
[21]
|
H. R. Byrd, J. Nocedal and A. R. Waltz, KNITRO: An integrated package for nonlinear optimization, Large-Scale Nonlinear Optimization, 83 (2006), 35-59.
doi: 10.1007/0-387-30065-1_4.
|
[22]
|
F. Troltzsch, Optimality Conditions for Parabolic Control Problems and Applications, Leipzig, 1984.
|
[23]
|
A. Wächter and T. Biegler, On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming, Mathematical Programming, 106 (2006), 25-57.
doi: 10.1007/s10107-004-0559-y.
|
[24]
|
J. Zowe and S. Kurcyusz, Regularity and stability for the mathematical programming problem in Banach spaces, Applied Mathematics and Optimization, 5 (1979), 49-62.
doi: 10.1007/BF01442543.
|