doi: 10.3934/naco.2022005
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Iterative method for solving split common fixed point problem of asymptotically demicontractive mappings in Hilbert spaces

School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa

* Corresponding author: Oluwatosin Temitope Mewomo

Received  May 2021 Revised  February 2022 Early access March 2022

Fund Project: The second author is supported by International Mathematical Union (IMU) Breakout Graduate Fellowship and the third author is supported by National Research Foundation (NRF), South Africa, (Grant Number 119903)

In this paper, we present a new algorithm for solving split common fixed point problem for asymptotically demicontractive mapping in two real Hilbert spaces. Under some mild conditions, we prove that the proposed method converges strongly to a solution of the problem. We give examples to illustrate that the class of asymptotically demicontractive mappings and the class of demicontractive mappings are independent. Moreover, we give numerical experiments to show the efficiency and applicability of our method in comparison with a related method in the literature. The results obtained unify, improve and extend so many related results in the literature in this direction.

Citation: Emeka Chigaemezu Godwin, Adeolu Taiwo, Oluwatosin Temitope Mewomo. Iterative method for solving split common fixed point problem of asymptotically demicontractive mappings in Hilbert spaces. Numerical Algebra, Control and Optimization, doi: 10.3934/naco.2022005
References:
[1]

T. O. AlakoyaL. O. JolaosoA. Taiwo and O. T. Mewomo, Inertial algorithm with self-adaptive stepsize for split common null point and common fixed point problems for multivalued mappings in Banach spaces, Optimization, (2021).  doi: 10.1080/02331934.2021.1895154.

[2]

T. O. Alakoya and O. T. Mewomo, Viscosity S-iteration method with inertial technique and self-adaptive step size for split variational inclusion, equilibrium and fixed point problems, Comput. Appl. Math., 41 (2022), Paper No. 39, 31 pp. doi: 10.1007/s40314-021-01749-3.

[3]

T. O. AlakoyaA. O. E. Owolabi and O. T. Mewomo, An inertial algorithm with a self-adaptive step size for a split equilibrium problem and a fixed point problem of an infinite family of strict pseudo-contractions, J. Nonlinear Var. Anal., 5 (2021), 803-829.  doi: 10.1007/s40314-021-01749-3.

[4]

T. O. AlakoyaA. TaiwoO. T. Mewomo and Y. J. Cho, An iterative algorithm for solving variational inequality, generalized mixed equilibrium, convex minimization and zeros problems for a class of nonexpansive-type mappings, Ann. Univ. Ferrara Sez. VII Sci. Mat., 67 (2021), 1-31.  doi: 10.1007/s11565-020-00354-2.

[5]

T. O. AlakoyaA. Taiwo and O. T. Mewomo, On system of split generalised mixed equilibrium and fixed point problems for multivalued mappings with no prior knowledge of operator norm, Fixed Point Theory, 23 (2022), 45-74.  doi: 10.24193/fpt-ro.

[6]

H. Q. Ansari and A. Rehan, Split feasibility and fixed point problems, Nonlinear Analysis, Trends Math., Birkhäuser/Springer, New Delhi, Berlin, (2014) 281–322.

[7]

C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Probl., 20 (2003), 103-120.  doi: 10.1088/0266-5611/20/1/006.

[8]

C. Byrne, Iterative oblique projection onto convex subsets and the split feasiblity problem, Inverse Probl., 18 (2002), 441-453.  doi: 10.1088/0266-5611/18/2/310.

[9]

L.-C. CengQ. H. Ansari and J.-C. Yao, Relaxed extragradient methods for finding minimum-norm solutions of the split feasibility problem, Nonlinear Anal., 75 (2012), 2116-2125.  doi: 10.1016/j.na.2011.10.012.

[10]

Y. CensorT. BortfeldB. Martin and A. Trofimov, A unified approach for inversion problems in intensity-modulated radiation therapy, Phys. Med. Biol., 51 (2006), 2353-2365. 

[11]

Y. CensorY. ElvingN. Kopf and T. Bortfeld, The multiple-sets split feasibility problem and its applications for inverse problems, Inverse Probl., 21 (2005), 2353-2365.  doi: 10.1088/0266-5611/21/6/017.

[12]

Y. Censor and T. Elfving, A multi projection algorithm using Bregman projections in a product space, Numer. Algorithms, 8 (1994), 221-239.  doi: 10.1007/BF02142692.

[13]

Y. Censor and A. Segal, The split common fixed point problem for directed operators, J. Convex Anal., 16 (2009), 587600. 

[14]

E. E. Chima and M. O. Osilike, Split common fixed point problem for class of asymptotically hemicontractive mappings, J. Nig. Math. Soc., 38 (2019), 363-389. 

[15]

M. Eslamian and P. Eslamian, Strong convergence of a split common fixed point problem, Numer. Func. Anal. Optim., 37 (2016), 1248-1266.  doi: 10.1080/01630563.2016.1200076.

[16]

E. C. GodwinC. Izuchukwu and O. T. Mewomo, An inertial extrapolation method for solving generalized split feasibility problems in real Hilbert spaces, Boll. Unione Mat. Ital., 14 (2021), 379-401.  doi: 10.1007/s40574-020-00272-3.

[17]

B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc., 73 (1967), 957-961.  doi: 10.1090/S0002-9904-1967-11864-0.

[18]

C. IzuchukwuG. N. Ogwo and O. T. Mewomo, An inertial method for solving generalized split feasibility problems over the solution set of monotone variational inclusions, Optimization, (2020).  doi: 10.1080/02331934.2020.1808648.

[19]

R. Kraikaew and S. Saejung, On split common fixed point problems, J. Math. Anal. Appl., 415 (2014), 513-524.  doi: 10.1016/j.jmaa.2014.01.068.

[20]

Q. H. Liu, Convergence theorems of the sequence of iterates for asymptotically demicontractive and hemicontractive mappings, Nonlinear Anal., 26 (1996), 1835-1842.  doi: 10.1016/0362-546X(94)00351-H.

[21]

P. E. Mainge, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal., 16 (2008), 899-912.  doi: 10.1007/s11228-008-0102-z.

[22]

A. Moudafi, Viscocity approximation methods for fixed-point problems, J. Math. Anal. Appl., 241 (2000), 46-55.  doi: 10.1006/jmaa.1999.6615.

[23]

A. Moudafi, A note on the split common fixed-point problem for quasi-nonexpansive operators, Nonlinear Anal., 74 (2011), 4083-4087.  doi: 10.1016/j.na.2011.03.041.

[24]

C. Moore and B. V. C. Nnoli, Iterative sequence for asymptotically demicontractive maps in Banach spaces, J. Math. Anal. Appl., 302 (2005), 557-562.  doi: 10.1016/j.jmaa.2004.03.006.

[25]

G. N. OgwoT. O. Alakoya and O. T. Mewomo, Iterative algorithm with self-adaptive step size for approximating the common solution of variational inequality and fixed point problems, Optimization, (2021).  doi: 10.1080/02331934.2021.1981897.

[26]

G. N. OgwoT. O. Alakoya and O. T. Mewomo, Inertial iterative method with self-adaptive step size for finite family of split monotone variational inclusion and fixed point problems in Banach spaces, Demonstr. Math., (2021).  doi: 10.1515/dema-2020-0119.

[27]

G. N. OgwoC. Izuchukwu and O. T. Mewomo, Inertial methods for finding minimum-norm solutions of the split variational inequality problem beyond monotonicity, Numer. Algorithms, 88 (2021), 1419-1456.  doi: 10.1007/s11075-021-01081-1.

[28]

M. A. OlonaT. O. AlakoyaA. O.-E. Owolabi and O. T. Mewomo, Inertial shrinking projection algorithm with self-adaptive step size for split generalized equilibrium and fixed point problems for a countable family of nonexpansive multivalued mappings, Demonstr. Math., 54 (2021), 47-67.  doi: 10.1515/dema-2021-0006.

[29]

M. A. Olona, T. O. Alakoya, A. O.-E. Owolabi and O. T. Mewomo, Inertial algorithm for solving equilibrium, variational inclusion and fixed point problems for an infinite family of strictly pseudocontractive mappings, J. Nonlinear Funct. Anal., 2021 (2021), Art. ID 10, 21 pp. doi: 10.1007/s40314-021-01749-3.

[30]

A. O.-E. OwolabiT. O. AlakoyaA. Taiwo and O. T. Mewomo, A new inertial-projection algorithm for approximating common solution of variational inequality and fixed point problems of multivalued mappings, Numer. Algebra Control Optim., 12 (2022), 255-278.  doi: 10.3934/naco.2021004.

[31]

M. O. Osilike, Iterative approximation of fixed points of asymptotically demicontractive mappings, Indian J. Pure Appl. Math., 24 (1998), 1291-1300. 

[32]

M. O. OsilikeA. UdomeneD. I. Igbokwe and B. G. Akuchu, Demiclosedness principle and convergence theorems for $k$-strictly asymptotically pseudocontractive maps, J. Math. Anal. Appl., 326 (2007), 1334-1345.  doi: 10.1016/j.jmaa.2005.12.052.

[33]

M. O. Osilike and S. C. Aniagbosor, Fixed points of asymptotically demicontractive mappings in certain Banach spaces, Indian J. Pure Appl. Math., 32 (2001), 1519-1537. 

[34]

Y. Shehu and P. Cholamjiak, Another look at the split common fixed point problem for demicontractive operators, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 110 (2016), 201-218.  doi: 10.1007/s13398-015-0231-9.

[35]

Y. Shehu and O. T. Mewomo, Further investigation into split common fixed point problem for demicontractive operators, Acta Math. Sin. (Engl. Ser.), 32 (2016), 1357-1376.  doi: 10.1007/s10114-016-5548-6.

[36]

A. TaiwoT. O. Alakoya and O.T. Mewomo, Halpern-type iterative process for solving split common fixed point and monotone variational inclusion problem between Banach spaces, Numer. Algorithms, 86 (2021), 1359-1389.  doi: 10.1007/s11075-020-00937-2.

[37]

A. Taiwo, T. O. Alakoya and O. T. Mewomo, Strong convergence theorem for solving equilibrium problem and fixed point of relatively nonexpansive multi-valued mappings in a Banach space with applications, Asian-Eur. J. Math., 14 (2021), Art. ID 2150137, 31 pp. doi: 10.1142/S1793557121501370.

[38]

A. TaiwoL. O. Jolaoso and O. T. Mewomo, Inertial-type algorithm for solving split common fixed point problem in Banach spaces, J. Sci. Comput., (2020).  doi: 10.1007/s10915-020-01385-9.

[39]

A. TaiwoL. O. Jolaoso and O. T. Mewomo, General alternative regularization method for solving split equality common fixed point problem for quasi-pseudocontractive mappings in Hilbert spaces, Ric Mat., 69 (2020), 235-259.  doi: 10.1007/s11587-019-00460-0.

[40]

A. TaiwoO. T. Mewomo and A. Gibali, Simple strong convergent method for solving split common fixed point problem, J. Nonlinear Var. Anal., 5 (2021), 777-793. 

[41]

J. F. TangS. S. Chang and M. Liu, General split feasibility problems for two families of nonexpansive mappings in Hilbert spaces, Acta Math. Sci., 36B (2016), 602-613.  doi: 10.1016/S0252-9602(16)30024-8.

[42]

V. A. UzorT. O. Alakoya and O. T. Mewomo, Strong convergence of a self-adaptive inertial Tseng's extragradient method for pseudomonotone variational inequalities and fixed point problems, Open Math., (2022).  doi: 10.1515/math-2022-0429.

[43]

T. Q. Wang and T. M. Kim, Simultaneous iterative algorithm for the split equality fixed-point problem of demicontractive mappings, J. Nonlinear Sci. Appl., 10 (2017), 154-65.  doi: 10.22436/jnsa.010.01.15.

[44]

F. Wang and H. K. Xu, Weak and strong convergence of two algorithms for the split fixed point problem, Numer. Math. Theory Method Appl., 11 (2018), 770-781. 

[45]

Y. Wang, X. Wu and C. Pan, The iterative solutions of split common fixed point problem for asymptotically nonexpansive mappings in Banach spaces, Fixed Point Theory Appl., 2020 (2020), Art. 18. doi: 10.1186/s13663-020-00686-w.

[46]

H. K. Xu, Iterarive algorithms for nonlinear operators, J. Lond. Math. Soc., 66 (2002), 246-256.  doi: 10.1112/S0024610702003332.

[47]

H. K. Xu, An alternative regularization method for nonexpansive mappings with applications, Contmp. Maths., 513 (2010), 239-263.  doi: 10.1090/conm/513/10087.

[48]

I. Yamada, The hybrid steepest descent method for the variational inequality problem over the intersection of fixed point sets of nonexpansive mappings, Stud. Comput. Math., 8 (2001), 473-504.  doi: 10.1016/S1570-579X(01)80028-8.

[49]

C. Yang and S. He, General alternative regularization methods for nonexpansive mappings in Hilbert spaces, Fixed Point Theory Appl., 2014 (2014), Art. 203, 14 pp. doi: 10.1186/1687-1812-2014-203.

[50]

J. ZhaoY. Jia and H. Zhang, General alternative regularization methods for split equality common fixed-point problem, Optimization, 67 (2018), 619-635.  doi: 10.1080/02331934.2017.1412437.

[51]

J. Zhao and S. He, Strong convergence of the viscosity approximation process for the split common fixed-point problem of quasi-nonexpansive mappings, J. Appl. Math., 2012 (2012), Art. ID. 438023, 12 pp. doi: 10.1155/2012/438023.

show all references

References:
[1]

T. O. AlakoyaL. O. JolaosoA. Taiwo and O. T. Mewomo, Inertial algorithm with self-adaptive stepsize for split common null point and common fixed point problems for multivalued mappings in Banach spaces, Optimization, (2021).  doi: 10.1080/02331934.2021.1895154.

[2]

T. O. Alakoya and O. T. Mewomo, Viscosity S-iteration method with inertial technique and self-adaptive step size for split variational inclusion, equilibrium and fixed point problems, Comput. Appl. Math., 41 (2022), Paper No. 39, 31 pp. doi: 10.1007/s40314-021-01749-3.

[3]

T. O. AlakoyaA. O. E. Owolabi and O. T. Mewomo, An inertial algorithm with a self-adaptive step size for a split equilibrium problem and a fixed point problem of an infinite family of strict pseudo-contractions, J. Nonlinear Var. Anal., 5 (2021), 803-829.  doi: 10.1007/s40314-021-01749-3.

[4]

T. O. AlakoyaA. TaiwoO. T. Mewomo and Y. J. Cho, An iterative algorithm for solving variational inequality, generalized mixed equilibrium, convex minimization and zeros problems for a class of nonexpansive-type mappings, Ann. Univ. Ferrara Sez. VII Sci. Mat., 67 (2021), 1-31.  doi: 10.1007/s11565-020-00354-2.

[5]

T. O. AlakoyaA. Taiwo and O. T. Mewomo, On system of split generalised mixed equilibrium and fixed point problems for multivalued mappings with no prior knowledge of operator norm, Fixed Point Theory, 23 (2022), 45-74.  doi: 10.24193/fpt-ro.

[6]

H. Q. Ansari and A. Rehan, Split feasibility and fixed point problems, Nonlinear Analysis, Trends Math., Birkhäuser/Springer, New Delhi, Berlin, (2014) 281–322.

[7]

C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Probl., 20 (2003), 103-120.  doi: 10.1088/0266-5611/20/1/006.

[8]

C. Byrne, Iterative oblique projection onto convex subsets and the split feasiblity problem, Inverse Probl., 18 (2002), 441-453.  doi: 10.1088/0266-5611/18/2/310.

[9]

L.-C. CengQ. H. Ansari and J.-C. Yao, Relaxed extragradient methods for finding minimum-norm solutions of the split feasibility problem, Nonlinear Anal., 75 (2012), 2116-2125.  doi: 10.1016/j.na.2011.10.012.

[10]

Y. CensorT. BortfeldB. Martin and A. Trofimov, A unified approach for inversion problems in intensity-modulated radiation therapy, Phys. Med. Biol., 51 (2006), 2353-2365. 

[11]

Y. CensorY. ElvingN. Kopf and T. Bortfeld, The multiple-sets split feasibility problem and its applications for inverse problems, Inverse Probl., 21 (2005), 2353-2365.  doi: 10.1088/0266-5611/21/6/017.

[12]

Y. Censor and T. Elfving, A multi projection algorithm using Bregman projections in a product space, Numer. Algorithms, 8 (1994), 221-239.  doi: 10.1007/BF02142692.

[13]

Y. Censor and A. Segal, The split common fixed point problem for directed operators, J. Convex Anal., 16 (2009), 587600. 

[14]

E. E. Chima and M. O. Osilike, Split common fixed point problem for class of asymptotically hemicontractive mappings, J. Nig. Math. Soc., 38 (2019), 363-389. 

[15]

M. Eslamian and P. Eslamian, Strong convergence of a split common fixed point problem, Numer. Func. Anal. Optim., 37 (2016), 1248-1266.  doi: 10.1080/01630563.2016.1200076.

[16]

E. C. GodwinC. Izuchukwu and O. T. Mewomo, An inertial extrapolation method for solving generalized split feasibility problems in real Hilbert spaces, Boll. Unione Mat. Ital., 14 (2021), 379-401.  doi: 10.1007/s40574-020-00272-3.

[17]

B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc., 73 (1967), 957-961.  doi: 10.1090/S0002-9904-1967-11864-0.

[18]

C. IzuchukwuG. N. Ogwo and O. T. Mewomo, An inertial method for solving generalized split feasibility problems over the solution set of monotone variational inclusions, Optimization, (2020).  doi: 10.1080/02331934.2020.1808648.

[19]

R. Kraikaew and S. Saejung, On split common fixed point problems, J. Math. Anal. Appl., 415 (2014), 513-524.  doi: 10.1016/j.jmaa.2014.01.068.

[20]

Q. H. Liu, Convergence theorems of the sequence of iterates for asymptotically demicontractive and hemicontractive mappings, Nonlinear Anal., 26 (1996), 1835-1842.  doi: 10.1016/0362-546X(94)00351-H.

[21]

P. E. Mainge, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal., 16 (2008), 899-912.  doi: 10.1007/s11228-008-0102-z.

[22]

A. Moudafi, Viscocity approximation methods for fixed-point problems, J. Math. Anal. Appl., 241 (2000), 46-55.  doi: 10.1006/jmaa.1999.6615.

[23]

A. Moudafi, A note on the split common fixed-point problem for quasi-nonexpansive operators, Nonlinear Anal., 74 (2011), 4083-4087.  doi: 10.1016/j.na.2011.03.041.

[24]

C. Moore and B. V. C. Nnoli, Iterative sequence for asymptotically demicontractive maps in Banach spaces, J. Math. Anal. Appl., 302 (2005), 557-562.  doi: 10.1016/j.jmaa.2004.03.006.

[25]

G. N. OgwoT. O. Alakoya and O. T. Mewomo, Iterative algorithm with self-adaptive step size for approximating the common solution of variational inequality and fixed point problems, Optimization, (2021).  doi: 10.1080/02331934.2021.1981897.

[26]

G. N. OgwoT. O. Alakoya and O. T. Mewomo, Inertial iterative method with self-adaptive step size for finite family of split monotone variational inclusion and fixed point problems in Banach spaces, Demonstr. Math., (2021).  doi: 10.1515/dema-2020-0119.

[27]

G. N. OgwoC. Izuchukwu and O. T. Mewomo, Inertial methods for finding minimum-norm solutions of the split variational inequality problem beyond monotonicity, Numer. Algorithms, 88 (2021), 1419-1456.  doi: 10.1007/s11075-021-01081-1.

[28]

M. A. OlonaT. O. AlakoyaA. O.-E. Owolabi and O. T. Mewomo, Inertial shrinking projection algorithm with self-adaptive step size for split generalized equilibrium and fixed point problems for a countable family of nonexpansive multivalued mappings, Demonstr. Math., 54 (2021), 47-67.  doi: 10.1515/dema-2021-0006.

[29]

M. A. Olona, T. O. Alakoya, A. O.-E. Owolabi and O. T. Mewomo, Inertial algorithm for solving equilibrium, variational inclusion and fixed point problems for an infinite family of strictly pseudocontractive mappings, J. Nonlinear Funct. Anal., 2021 (2021), Art. ID 10, 21 pp. doi: 10.1007/s40314-021-01749-3.

[30]

A. O.-E. OwolabiT. O. AlakoyaA. Taiwo and O. T. Mewomo, A new inertial-projection algorithm for approximating common solution of variational inequality and fixed point problems of multivalued mappings, Numer. Algebra Control Optim., 12 (2022), 255-278.  doi: 10.3934/naco.2021004.

[31]

M. O. Osilike, Iterative approximation of fixed points of asymptotically demicontractive mappings, Indian J. Pure Appl. Math., 24 (1998), 1291-1300. 

[32]

M. O. OsilikeA. UdomeneD. I. Igbokwe and B. G. Akuchu, Demiclosedness principle and convergence theorems for $k$-strictly asymptotically pseudocontractive maps, J. Math. Anal. Appl., 326 (2007), 1334-1345.  doi: 10.1016/j.jmaa.2005.12.052.

[33]

M. O. Osilike and S. C. Aniagbosor, Fixed points of asymptotically demicontractive mappings in certain Banach spaces, Indian J. Pure Appl. Math., 32 (2001), 1519-1537. 

[34]

Y. Shehu and P. Cholamjiak, Another look at the split common fixed point problem for demicontractive operators, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 110 (2016), 201-218.  doi: 10.1007/s13398-015-0231-9.

[35]

Y. Shehu and O. T. Mewomo, Further investigation into split common fixed point problem for demicontractive operators, Acta Math. Sin. (Engl. Ser.), 32 (2016), 1357-1376.  doi: 10.1007/s10114-016-5548-6.

[36]

A. TaiwoT. O. Alakoya and O.T. Mewomo, Halpern-type iterative process for solving split common fixed point and monotone variational inclusion problem between Banach spaces, Numer. Algorithms, 86 (2021), 1359-1389.  doi: 10.1007/s11075-020-00937-2.

[37]

A. Taiwo, T. O. Alakoya and O. T. Mewomo, Strong convergence theorem for solving equilibrium problem and fixed point of relatively nonexpansive multi-valued mappings in a Banach space with applications, Asian-Eur. J. Math., 14 (2021), Art. ID 2150137, 31 pp. doi: 10.1142/S1793557121501370.

[38]

A. TaiwoL. O. Jolaoso and O. T. Mewomo, Inertial-type algorithm for solving split common fixed point problem in Banach spaces, J. Sci. Comput., (2020).  doi: 10.1007/s10915-020-01385-9.

[39]

A. TaiwoL. O. Jolaoso and O. T. Mewomo, General alternative regularization method for solving split equality common fixed point problem for quasi-pseudocontractive mappings in Hilbert spaces, Ric Mat., 69 (2020), 235-259.  doi: 10.1007/s11587-019-00460-0.

[40]

A. TaiwoO. T. Mewomo and A. Gibali, Simple strong convergent method for solving split common fixed point problem, J. Nonlinear Var. Anal., 5 (2021), 777-793. 

[41]

J. F. TangS. S. Chang and M. Liu, General split feasibility problems for two families of nonexpansive mappings in Hilbert spaces, Acta Math. Sci., 36B (2016), 602-613.  doi: 10.1016/S0252-9602(16)30024-8.

[42]

V. A. UzorT. O. Alakoya and O. T. Mewomo, Strong convergence of a self-adaptive inertial Tseng's extragradient method for pseudomonotone variational inequalities and fixed point problems, Open Math., (2022).  doi: 10.1515/math-2022-0429.

[43]

T. Q. Wang and T. M. Kim, Simultaneous iterative algorithm for the split equality fixed-point problem of demicontractive mappings, J. Nonlinear Sci. Appl., 10 (2017), 154-65.  doi: 10.22436/jnsa.010.01.15.

[44]

F. Wang and H. K. Xu, Weak and strong convergence of two algorithms for the split fixed point problem, Numer. Math. Theory Method Appl., 11 (2018), 770-781. 

[45]

Y. Wang, X. Wu and C. Pan, The iterative solutions of split common fixed point problem for asymptotically nonexpansive mappings in Banach spaces, Fixed Point Theory Appl., 2020 (2020), Art. 18. doi: 10.1186/s13663-020-00686-w.

[46]

H. K. Xu, Iterarive algorithms for nonlinear operators, J. Lond. Math. Soc., 66 (2002), 246-256.  doi: 10.1112/S0024610702003332.

[47]

H. K. Xu, An alternative regularization method for nonexpansive mappings with applications, Contmp. Maths., 513 (2010), 239-263.  doi: 10.1090/conm/513/10087.

[48]

I. Yamada, The hybrid steepest descent method for the variational inequality problem over the intersection of fixed point sets of nonexpansive mappings, Stud. Comput. Math., 8 (2001), 473-504.  doi: 10.1016/S1570-579X(01)80028-8.

[49]

C. Yang and S. He, General alternative regularization methods for nonexpansive mappings in Hilbert spaces, Fixed Point Theory Appl., 2014 (2014), Art. 203, 14 pp. doi: 10.1186/1687-1812-2014-203.

[50]

J. ZhaoY. Jia and H. Zhang, General alternative regularization methods for split equality common fixed-point problem, Optimization, 67 (2018), 619-635.  doi: 10.1080/02331934.2017.1412437.

[51]

J. Zhao and S. He, Strong convergence of the viscosity approximation process for the split common fixed-point problem of quasi-nonexpansive mappings, J. Appl. Math., 2012 (2012), Art. ID. 438023, 12 pp. doi: 10.1155/2012/438023.

Figure 1.  Example 4.1: Top left: Case Ⅰ; Top right: Case Ⅱ; Bottom left: Case Ⅲ; Bottom right: Case Ⅳ
Table 1.  Numerical results for Example 4.1
Algorithm 3.4 Algorithm (10) Alg. 3.2Chi
Case I CPU time (sec) 0.0020 0.0024 0.0036
No. of Iter. 18 21 33
Case II CPU time (sec) 0.0033 0.0389 0.0054
No. of Iter. 19 23 35
Case III CPU time (sec) 0.0026 0.0034 0.0059
No. of Iter. 18 21 33
Case IV CPU time (sec) 0.0019 0.0195 0.0032
No. of Iter. 19 22 34
Algorithm 3.4 Algorithm (10) Alg. 3.2Chi
Case I CPU time (sec) 0.0020 0.0024 0.0036
No. of Iter. 18 21 33
Case II CPU time (sec) 0.0033 0.0389 0.0054
No. of Iter. 19 23 35
Case III CPU time (sec) 0.0026 0.0034 0.0059
No. of Iter. 18 21 33
Case IV CPU time (sec) 0.0019 0.0195 0.0032
No. of Iter. 19 22 34
[1]

Adeolu Taiwo, Lateef Olakunle Jolaoso, Oluwatosin Temitope Mewomo. Viscosity approximation method for solving the multiple-set split equality common fixed-point problems for quasi-pseudocontractive mappings in Hilbert spaces. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2733-2759. doi: 10.3934/jimo.2020092

[2]

Habib ur Rehman, Poom Kumam, Yusuf I. Suleiman, Widaya Kumam. An adaptive block iterative process for a class of multiple sets split variational inequality problems and common fixed point problems in Hilbert spaces. Numerical Algebra, Control and Optimization, 2022  doi: 10.3934/naco.2022007

[3]

Byung-Soo Lee. A convergence theorem of common fixed points of a countably infinite family of asymptotically quasi-$f_i$-expansive mappings in convex metric spaces. Numerical Algebra, Control and Optimization, 2013, 3 (3) : 557-565. doi: 10.3934/naco.2013.3.557

[4]

Shaotao Hu, Yuanheng Wang, Bing Tan, Fenghui Wang. Inertial iterative method for solving variational inequality problems of pseudo-monotone operators and fixed point problems of nonexpansive mappings in Hilbert spaces. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022060

[5]

Francis Akutsah, Akindele Adebayo Mebawondu, Hammed Anuoluwapo Abass, Ojen Kumar Narain. A self adaptive method for solving a class of bilevel variational inequalities with split variational inequality and composed fixed point problem constraints in Hilbert spaces. Numerical Algebra, Control and Optimization, 2021  doi: 10.3934/naco.2021046

[6]

Abd-semii Oluwatosin-Enitan Owolabi, Timilehin Opeyemi Alakoya, Adeolu Taiwo, Oluwatosin Temitope Mewomo. A new inertial-projection algorithm for approximating common solution of variational inequality and fixed point problems of multivalued mappings. Numerical Algebra, Control and Optimization, 2022, 12 (2) : 255-278. doi: 10.3934/naco.2021004

[7]

Mohammad Eslamian, Ahmad Kamandi. A novel algorithm for approximating common solution of a system of monotone inclusion problems and common fixed point problem. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021210

[8]

Kazeem Olalekan Aremu, Chinedu Izuchukwu, Grace Nnenanya Ogwo, Oluwatosin Temitope Mewomo. Multi-step iterative algorithm for minimization and fixed point problems in p-uniformly convex metric spaces. Journal of Industrial and Management Optimization, 2021, 17 (4) : 2161-2180. doi: 10.3934/jimo.2020063

[9]

Xueling Zhou, Meixia Li, Haitao Che. Relaxed successive projection algorithm with strong convergence for the multiple-sets split equality problem. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2557-2572. doi: 10.3934/jimo.2020082

[10]

Yan Tang. Convergence analysis of a new iterative algorithm for solving split variational inclusion problems. Journal of Industrial and Management Optimization, 2020, 16 (2) : 945-964. doi: 10.3934/jimo.2018187

[11]

Timilehin Opeyemi Alakoya, Lateef Olakunle Jolaoso, Oluwatosin Temitope Mewomo. A self adaptive inertial algorithm for solving split variational inclusion and fixed point problems with applications. Journal of Industrial and Management Optimization, 2022, 18 (1) : 239-265. doi: 10.3934/jimo.2020152

[12]

Aviv Gibali, Dang Thi Mai, Nguyen The Vinh. A new relaxed CQ algorithm for solving split feasibility problems in Hilbert spaces and its applications. Journal of Industrial and Management Optimization, 2019, 15 (2) : 963-984. doi: 10.3934/jimo.2018080

[13]

Ya-Zheng Dang, Zhong-Hui Xue, Yan Gao, Jun-Xiang Li. Fast self-adaptive regularization iterative algorithm for solving split feasibility problem. Journal of Industrial and Management Optimization, 2020, 16 (4) : 1555-1569. doi: 10.3934/jimo.2019017

[14]

B. S. Lee, Arif Rafiq. Strong convergence of an implicit iteration process for a finite family of Lipschitz $\phi -$uniformly pseudocontractive mappings in Banach spaces. Numerical Algebra, Control and Optimization, 2014, 4 (4) : 287-293. doi: 10.3934/naco.2014.4.287

[15]

Teck-Cheong Lim. On the largest common fixed point of a commuting family of isotone maps. Conference Publications, 2005, 2005 (Special) : 621-623. doi: 10.3934/proc.2005.2005.621

[16]

Adrian Petruşel, Radu Precup, Marcel-Adrian Şerban. On the approximation of fixed points for non-self mappings on metric spaces. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 733-747. doi: 10.3934/dcdsb.2019264

[17]

Jamilu Abubakar, Poom Kumam, Abor Isa Garba, Muhammad Sirajo Abdullahi, Abdulkarim Hassan Ibrahim, Wachirapong Jirakitpuwapat. An efficient iterative method for solving split variational inclusion problem with applications. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021160

[18]

Sylvia Serfaty. Gamma-convergence of gradient flows on Hilbert and metric spaces and applications. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1427-1451. doi: 10.3934/dcds.2011.31.1427

[19]

Cleon S. Barroso. The approximate fixed point property in Hausdorff topological vector spaces and applications. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 467-479. doi: 10.3934/dcds.2009.25.467

[20]

Yazheng Dang, Marcus Ang, Jie Sun. An inertial triple-projection algorithm for solving the split feasibility problem. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022019

 Impact Factor: 

Metrics

  • PDF downloads (206)
  • HTML views (281)
  • Cited by (0)

[Back to Top]