doi: 10.3934/naco.2022013
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Optimization method in counter terrorism: Min-Max zero-sum differential game approach

1. 

Basic Science Department, Faculty of Computers and informatics, Suez Canal university, Ismailia, Egypt

2. 

Department of Mathematics, Faculty of Science, Tanta University, Tanta, Egypt

*Corresponding author: heba.tallah@ci.suez.edu.eg

Received  May 2021 Revised  April 2022 Early access May 2022

One of the most critical problems facing governments at present is terrorism. Most recent studies are striving to find an optimal solution to this problem that threatens the security and stability of people. To combat terrorism, government uses various means, such as improving education quality, providing labor opportunities, seeking social justice, creating religious awareness, and building security arrangements. This study aims to evaluate the optimum strategy for both government and terrorist organization using a min-max zero-sum differential game approach. In addition, it analyses the dynamics of the government's activities separately and explain the impact of the government's counter-terror measures on the activity and strength of international terror organization.

Citation: Abd El-Monem A. Megahed, Ebrahim A. Youness, Hebatallah K. Arafat. Optimization method in counter terrorism: Min-Max zero-sum differential game approach. Numerical Algebra, Control and Optimization, doi: 10.3934/naco.2022013
References:
[1]

E. AhmedA. Elgazzar and A. Hegazi, On complex adaptive systems and terrorism, Physics Letters A, 337 (2005), 127-129. 

[2]

J. CaulkinsG. FeichtingerD. Grass and G. Tragler, Optimal control of terrorism and global reputation: A case study with novel threshold behavior, Operations Research Letters, 37 (2009), 387-391.  doi: 10.1016/j.orl.2009.07.003.

[3]

J. CaulkinsD. GrassG. Feichtinger and G. Tragler, Optimizing counter-terror operations: Should one fight fire with "fire" or "water"?, Computers & Operations Research, 35 (2008), 1874-1885. 

[4]

H.-J. ChuJ.-G. HsiehK.-H. Hsia and L.-W. Chen, Fuzzy differential game of guarding a movable territory, Information Sciences, 91 (1996), 113-131.  doi: 10.1016/0020-0255(95)00299-5.

[5]

S. HegazyA. MegahedE. Youness and A. Elbann, Min-max zero-sum two persons fuzzy continuous differential games, International Journal of Applied Mathematics, 21 (2008), 1-16. 

[6]

K.-H. Hsia and J.-G. Hsieh, A first approach to fuzzy differential game problem: guarding a territory, Fuzzy Sets and Systems, 55 (1993), 157-167.  doi: 10.1016/0165-0114(93)90128-5.

[7]

A. Megahed, A differential game related to terrorism: min-max zero-sum two persons differential game, Neural Computing and Applications, 30 (2016), 865-870.  doi: 10.1016/j.joems.2017.03.007.

[8]

A. Megahed, The development of a differential game related to terrorism: Min-max differential game, Journal of the Egyptian Mathematical Society, 25 (2017), 308-312.  doi: 10.1016/j.joems.2017.03.007.

[9]

A. Megahed, The stackelberg differential game for counter-terrorism, Quality & Quantity, 53 (2018), 207-220. 

[10]

A. Megahed, A differential game related to terrorism: Stackelberg differential game of e-differentiable and e-convex function, European Journal of Pure and Applied Mathematics, 12 (2019), 654-667.  doi: 10.29020/nybg.ejpam.v12i2.3375.

[11]

A. Megahed and S. Hegazy, Min-max zero sum two persons continuous differential game with fuzzy controls, Asian Journal of Current Engineering and Maths, 2 (2013), 86-98. 

[12]

A. NovakG. Feichtinger and G. Leitmann, A differential game related to terrorism: Nash and stackelberg strategies, Journal of Optimization Theory and Applications, 144 (2010), 533-555.  doi: 10.1007/s10957-009-9643-z.

[13]

A. Roy and J. A. Paul, Terrorism deterrence in a two country framework: strategic interactions between r & d, defense and pre-emption, Annals of Operations Research, 211 (2013), 399-432.  doi: 10.1007/s10479-013-1431-3.

[14]

J. Wang and P. Wang, Counterterror measures and economic growth: A differential game, Operations Research Letters, 41 (2013), 285-289.  doi: 10.1016/j.orl.2013.02.008.

[15]

E. YounessJ. Hughes and N. El-Kholy, Parametric nash coalitive differential games, Mathematical and Computer Modelling, 26 (1997), 97-105.  doi: 10.1016/S0895-7177(97)00125-8.

[16]

E. Youness and A. Megahed, A study on fuzzy differential game, Le Matematiche, 56 (2001), 97-107. 

[17]

E. Youness and A. Megahed, A study on large scale continuous differential games, Bull. Culcutta. Math. Soc., 94 (2002), 359-368. 

show all references

References:
[1]

E. AhmedA. Elgazzar and A. Hegazi, On complex adaptive systems and terrorism, Physics Letters A, 337 (2005), 127-129. 

[2]

J. CaulkinsG. FeichtingerD. Grass and G. Tragler, Optimal control of terrorism and global reputation: A case study with novel threshold behavior, Operations Research Letters, 37 (2009), 387-391.  doi: 10.1016/j.orl.2009.07.003.

[3]

J. CaulkinsD. GrassG. Feichtinger and G. Tragler, Optimizing counter-terror operations: Should one fight fire with "fire" or "water"?, Computers & Operations Research, 35 (2008), 1874-1885. 

[4]

H.-J. ChuJ.-G. HsiehK.-H. Hsia and L.-W. Chen, Fuzzy differential game of guarding a movable territory, Information Sciences, 91 (1996), 113-131.  doi: 10.1016/0020-0255(95)00299-5.

[5]

S. HegazyA. MegahedE. Youness and A. Elbann, Min-max zero-sum two persons fuzzy continuous differential games, International Journal of Applied Mathematics, 21 (2008), 1-16. 

[6]

K.-H. Hsia and J.-G. Hsieh, A first approach to fuzzy differential game problem: guarding a territory, Fuzzy Sets and Systems, 55 (1993), 157-167.  doi: 10.1016/0165-0114(93)90128-5.

[7]

A. Megahed, A differential game related to terrorism: min-max zero-sum two persons differential game, Neural Computing and Applications, 30 (2016), 865-870.  doi: 10.1016/j.joems.2017.03.007.

[8]

A. Megahed, The development of a differential game related to terrorism: Min-max differential game, Journal of the Egyptian Mathematical Society, 25 (2017), 308-312.  doi: 10.1016/j.joems.2017.03.007.

[9]

A. Megahed, The stackelberg differential game for counter-terrorism, Quality & Quantity, 53 (2018), 207-220. 

[10]

A. Megahed, A differential game related to terrorism: Stackelberg differential game of e-differentiable and e-convex function, European Journal of Pure and Applied Mathematics, 12 (2019), 654-667.  doi: 10.29020/nybg.ejpam.v12i2.3375.

[11]

A. Megahed and S. Hegazy, Min-max zero sum two persons continuous differential game with fuzzy controls, Asian Journal of Current Engineering and Maths, 2 (2013), 86-98. 

[12]

A. NovakG. Feichtinger and G. Leitmann, A differential game related to terrorism: Nash and stackelberg strategies, Journal of Optimization Theory and Applications, 144 (2010), 533-555.  doi: 10.1007/s10957-009-9643-z.

[13]

A. Roy and J. A. Paul, Terrorism deterrence in a two country framework: strategic interactions between r & d, defense and pre-emption, Annals of Operations Research, 211 (2013), 399-432.  doi: 10.1007/s10479-013-1431-3.

[14]

J. Wang and P. Wang, Counterterror measures and economic growth: A differential game, Operations Research Letters, 41 (2013), 285-289.  doi: 10.1016/j.orl.2013.02.008.

[15]

E. YounessJ. Hughes and N. El-Kholy, Parametric nash coalitive differential games, Mathematical and Computer Modelling, 26 (1997), 97-105.  doi: 10.1016/S0895-7177(97)00125-8.

[16]

E. Youness and A. Megahed, A study on fuzzy differential game, Le Matematiche, 56 (2001), 97-107. 

[17]

E. Youness and A. Megahed, A study on large scale continuous differential games, Bull. Culcutta. Math. Soc., 94 (2002), 359-368. 

Figure 1.  The relation between $ u $ and $ \nu $
Figure 2.  The relation between $ Y $ and $ \nu $
[1]

Hermes H. Ferreira, Artur O. Lopes, Silvia R. C. Lopes. Decision Theory and large deviations for dynamical hypotheses tests: The Neyman-Pearson Lemma, Min-Max and Bayesian tests. Journal of Dynamics and Games, 2022, 9 (2) : 123-150. doi: 10.3934/jdg.2021031

[2]

Valery Y. Glizer, Oleg Kelis. Singular infinite horizon zero-sum linear-quadratic differential game: Saddle-point equilibrium sequence. Numerical Algebra, Control and Optimization, 2017, 7 (1) : 1-20. doi: 10.3934/naco.2017001

[3]

José M. Amigó, Ángel Giménez. Formulas for the topological entropy of multimodal maps based on min-max symbols. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3415-3434. doi: 10.3934/dcdsb.2015.20.3415

[4]

Jinchuan Zhou, Changyu Wang, Naihua Xiu, Soonyi Wu. First-order optimality conditions for convex semi-infinite min-max programming with noncompact sets. Journal of Industrial and Management Optimization, 2009, 5 (4) : 851-866. doi: 10.3934/jimo.2009.5.851

[5]

Roberto Livrea, Salvatore A. Marano. A min-max principle for non-differentiable functions with a weak compactness condition. Communications on Pure and Applied Analysis, 2009, 8 (3) : 1019-1029. doi: 10.3934/cpaa.2009.8.1019

[6]

Meixia Li, Changyu Wang, Biao Qu. Non-convex semi-infinite min-max optimization with noncompact sets. Journal of Industrial and Management Optimization, 2017, 13 (4) : 1859-1881. doi: 10.3934/jimo.2017022

[7]

Abbas Ja'afaru Badakaya, Aminu Sulaiman Halliru, Jamilu Adamu. Game value for a pursuit-evasion differential game problem in a Hilbert space. Journal of Dynamics and Games, 2022, 9 (1) : 1-12. doi: 10.3934/jdg.2021019

[8]

Eduardo Espinosa-Avila, Pablo Padilla Longoria, Francisco Hernández-Quiroz. Game theory and dynamic programming in alternate games. Journal of Dynamics and Games, 2017, 4 (3) : 205-216. doi: 10.3934/jdg.2017013

[9]

Astridh Boccabella, Roberto Natalini, Lorenzo Pareschi. On a continuous mixed strategies model for evolutionary game theory. Kinetic and Related Models, 2011, 4 (1) : 187-213. doi: 10.3934/krm.2011.4.187

[10]

Anna Lisa Amadori, Astridh Boccabella, Roberto Natalini. A hyperbolic model of spatial evolutionary game theory. Communications on Pure and Applied Analysis, 2012, 11 (3) : 981-1002. doi: 10.3934/cpaa.2012.11.981

[11]

Pierre Cardaliaguet, Chloé Jimenez, Marc Quincampoix. Pure and Random strategies in differential game with incomplete informations. Journal of Dynamics and Games, 2014, 1 (3) : 363-375. doi: 10.3934/jdg.2014.1.363

[12]

Nidhal Gammoudi, Hasnaa Zidani. A differential game control problem with state constraints. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022008

[13]

Marianne Akian, Stéphane Gaubert, Antoine Hochart. A game theory approach to the existence and uniqueness of nonlinear Perron-Frobenius eigenvectors. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 207-231. doi: 10.3934/dcds.2020009

[14]

Serap Ergün, Bariş Bülent Kırlar, Sırma Zeynep Alparslan Gök, Gerhard-Wilhelm Weber. An application of crypto cloud computing in social networks by cooperative game theory. Journal of Industrial and Management Optimization, 2020, 16 (4) : 1927-1941. doi: 10.3934/jimo.2019036

[15]

Tinggui Chen, Yanhui Jiang. Research on operating mechanism for creative products supply chain based on game theory. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1103-1112. doi: 10.3934/dcdss.2015.8.1103

[16]

Amina-Aicha Khennaoui, A. Othman Almatroud, Adel Ouannas, M. Mossa Al-sawalha, Giuseppe Grassi, Viet-Thanh Pham. The effect of caputo fractional difference operator on a novel game theory model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4549-4565. doi: 10.3934/dcdsb.2020302

[17]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic and Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051

[18]

Yadong Shu, Ying Dai, Zujun Ma. Evolutionary game theory analysis of supply chain with fairness concerns of retailers. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022098

[19]

Ovide Arino, Eva Sánchez. A saddle point theorem for functional state-dependent delay differential equations. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 687-722. doi: 10.3934/dcds.2005.12.687

[20]

Vianney Perchet, Marc Quincampoix. A differential game on Wasserstein space. Application to weak approachability with partial monitoring. Journal of Dynamics and Games, 2019, 6 (1) : 65-85. doi: 10.3934/jdg.2019005

 Impact Factor: 

Metrics

  • PDF downloads (111)
  • HTML views (64)
  • Cited by (0)

[Back to Top]