-
Previous Article
A direct approach to numerical homogenization in finite elasticity
- NHM Home
- This Issue
-
Next Article
Numerical approximations of a traffic flow model on networks
Phase and anti-phase boundaries in binary discrete systems: a variational viewpoint
1. | DAEIMI, Università di Cassino, via Di Biasio, 03043 Cassino (FR) |
2. | Dipartimento di Matematica, Università di Roma 'Tor Vergata', via della Ricerca Scientifica, 00133 Roma |
3. | Dipartimento di Matematica e Applicazioni "R. Caccioppoli”, Università di Napoli Federico II, Via Cintia, 80126 Napoli, Italy |
[1] |
Ken Shirakawa. Stability analysis for phase field systems associated with crystalline-type energies. Discrete and Continuous Dynamical Systems - S, 2011, 4 (2) : 483-504. doi: 10.3934/dcdss.2011.4.483 |
[2] |
I-Liang Chern, Chun-Hsiung Hsia. Dynamic phase transition for binary systems in cylindrical geometry. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 173-188. doi: 10.3934/dcdsb.2011.16.173 |
[3] |
Tian Ma, Shouhong Wang. Cahn-Hilliard equations and phase transition dynamics for binary systems. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 741-784. doi: 10.3934/dcdsb.2009.11.741 |
[4] |
François Gay-Balma, Darryl D. Holm, Tudor S. Ratiu. Variational principles for spin systems and the Kirchhoff rod. Journal of Geometric Mechanics, 2009, 1 (4) : 417-444. doi: 10.3934/jgm.2009.1.417 |
[5] |
Leif Arkeryd. A kinetic equation for spin polarized Fermi systems. Kinetic and Related Models, 2014, 7 (1) : 1-8. doi: 10.3934/krm.2014.7.1 |
[6] |
Marco Cicalese, Matthias Ruf. Discrete spin systems on random lattices at the bulk scaling. Discrete and Continuous Dynamical Systems - S, 2017, 10 (1) : 101-117. doi: 10.3934/dcdss.2017006 |
[7] |
Lei Li, Jianping Wang, Mingxin Wang. The dynamics of nonlocal diffusion systems with different free boundaries. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3651-3672. doi: 10.3934/cpaa.2020161 |
[8] |
Yihong Du, Mingxin Wang, Meng Zhao. Two species nonlocal diffusion systems with free boundaries. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1127-1162. doi: 10.3934/dcds.2021149 |
[9] |
Andrea Braides, Margherita Solci, Enrico Vitali. A derivation of linear elastic energies from pair-interaction atomistic systems. Networks and Heterogeneous Media, 2007, 2 (3) : 551-567. doi: 10.3934/nhm.2007.2.551 |
[10] |
Alessia Berti, Claudio Giorgi, Elena Vuk. Free energies and pseudo-elastic transitions for shape memory alloys. Discrete and Continuous Dynamical Systems - S, 2013, 6 (2) : 293-316. doi: 10.3934/dcdss.2013.6.293 |
[11] |
Lucia Scardia, Anja Schlömerkemper, Chiara Zanini. Towards uniformly $\Gamma$-equivalent theories for nonconvex discrete systems. Discrete and Continuous Dynamical Systems - B, 2012, 17 (2) : 661-686. doi: 10.3934/dcdsb.2012.17.661 |
[12] |
Peng Cheng, Feng Pan, Yanyan Yin, Song Wang. Probabilistic robust anti-disturbance control of uncertain systems. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2441-2450. doi: 10.3934/jimo.2020076 |
[13] |
Silviu-Iulian Niculescu, Peter S. Kim, Keqin Gu, Peter P. Lee, Doron Levy. Stability crossing boundaries of delay systems modeling immune dynamics in leukemia. Discrete and Continuous Dynamical Systems - B, 2010, 13 (1) : 129-156. doi: 10.3934/dcdsb.2010.13.129 |
[14] |
Nuno Costa Dias, Andrea Posilicano, João Nuno Prata. Self-adjoint, globally defined Hamiltonian operators for systems with boundaries. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1687-1706. doi: 10.3934/cpaa.2011.10.1687 |
[15] |
Xiao-Qiang Zhao, Shengfan Zhou. Kernel sections for processes and nonautonomous lattice systems. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 763-785. doi: 10.3934/dcdsb.2008.9.763 |
[16] |
Ahmed Y. Abdallah. Exponential attractors for second order lattice dynamical systems. Communications on Pure and Applied Analysis, 2009, 8 (3) : 803-813. doi: 10.3934/cpaa.2009.8.803 |
[17] |
Zhang Chen, Xiliang Li, Bixiang Wang. Invariant measures of stochastic delay lattice systems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 3235-3269. doi: 10.3934/dcdsb.2020226 |
[18] |
Xiaoying Han. Exponential attractors for lattice dynamical systems in weighted spaces. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 445-467. doi: 10.3934/dcds.2011.31.445 |
[19] |
Zonglin Jia, Youde Wang. Global weak solutions to Landau-Lifshtiz systems with spin-polarized transport. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1903-1935. doi: 10.3934/dcds.2020099 |
[20] |
Kathryn Lindsey, Rodrigo Treviño. Infinite type flat surface models of ergodic systems. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5509-5553. doi: 10.3934/dcds.2016043 |
2021 Impact Factor: 1.41
Tools
Metrics
Other articles
by authors
[Back to Top]