December  2007, 2(4): 647-660. doi: 10.3934/nhm.2007.2.647

Spatial instabilities and size limitations of flocks

1. 

Department of Mathematics and Statistics, Portland State University, Portland, OR 97207, United States

2. 

Departamento de Estatística e Informática, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros s/n, Dois Irmãos, 52171-900 Recife-PE, Brazil

3. 

Departamento de Matemáticas y Mecánica, IIMAS, Universidad Nacional Autonóma de México, Apdo. Postal 20-726, México D.F. 04510, Mexico

Received  April 2007 Revised  August 2007 Published  September 2007

The movement of flocks with a single leader (and a directed path from it to every agent) can be stabilized over time as has been shown before (for details see [3] and prior references therein, shorter descriptions are given in [1, 4]). But for large flocks perturbations in the movement of the leader may nonetheless grow to a considerable size as they propagate throughout the flock and before they die out over time. We calculate the effect of this “finite size resonance” in two simple cases, and indicate two applications of these ideas. The first is that if perturbations grow as the size of the flock gets larger, then the size of the flock will have a natural limitation. Our examples suggest that for flocks with a symmetric communication graph perturbations tend to grow much slower than in the asymmetric case. The second application concerns a simple traffic-like problem. Suppose the leader accelerates from standstill to a given velocity and a large flock is supposed to follow it. The acceleration of the leader is the ‘perturbation’.
Citation: J. J. P. Veerman, B. D. Stošić, A. Olvera. Spatial instabilities and size limitations of flocks. Networks and Heterogeneous Media, 2007, 2 (4) : 647-660. doi: 10.3934/nhm.2007.2.647
[1]

Xiaoyan Zhang, Yuxiang Zhang. Spatial dynamics of a reaction-diffusion cholera model with spatial heterogeneity. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2625-2640. doi: 10.3934/dcdsb.2018124

[2]

Hongyong Zhao, Qianjin Zhang, Linhe Zhu. The spatial dynamics of a zebrafish model with cross-diffusions. Mathematical Biosciences & Engineering, 2017, 14 (4) : 1035-1054. doi: 10.3934/mbe.2017054

[3]

Chris Cosner, Andrew L. Nevai. Spatial population dynamics in a producer-scrounger model. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1591-1607. doi: 10.3934/dcdsb.2015.20.1591

[4]

Haiyan Wang, Shiliang Wu. Spatial dynamics for a model of epidermal wound healing. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1215-1227. doi: 10.3934/mbe.2014.11.1215

[5]

Yu Jin, Xiao-Qiang Zhao. The spatial dynamics of a Zebra mussel model in river environments. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 1991-2010. doi: 10.3934/dcdsb.2020362

[6]

Zhuchun Li. Effectual leadership in flocks with hierarchy and individual preference. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3683-3702. doi: 10.3934/dcds.2014.34.3683

[7]

Linhe Zhu, Wenshan Liu. Spatial dynamics and optimization method for a network propagation model in a shifting environment. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1843-1874. doi: 10.3934/dcds.2020342

[8]

Peixuan Weng, Xiao-Qiang Zhao. Spatial dynamics of a nonlocal and delayed population model in a periodic habitat. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 343-366. doi: 10.3934/dcds.2011.29.343

[9]

Yueding Yuan, Yang Wang, Xingfu Zou. Spatial dynamics of a Lotka-Volterra model with a shifting habitat. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5633-5671. doi: 10.3934/dcdsb.2019076

[10]

Xueying Wang, Drew Posny, Jin Wang. A reaction-convection-diffusion model for cholera spatial dynamics. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2785-2809. doi: 10.3934/dcdsb.2016073

[11]

Naveen K. Vaidya, Feng-Bin Wang, Xingfu Zou. Avian influenza dynamics in wild birds with bird mobility and spatial heterogeneous environment. Discrete and Continuous Dynamical Systems - B, 2012, 17 (8) : 2829-2848. doi: 10.3934/dcdsb.2012.17.2829

[12]

Yongli Cai, Weiming Wang. Dynamics of a parasite-host epidemiological model in spatial heterogeneous environment. Discrete and Continuous Dynamical Systems - B, 2015, 20 (4) : 989-1013. doi: 10.3934/dcdsb.2015.20.989

[13]

Liang Zhang, Zhi-Cheng Wang. Spatial dynamics of a diffusive predator-prey model with stage structure. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1831-1853. doi: 10.3934/dcdsb.2015.20.1831

[14]

Stephen Pankavich, Christian Parkinson. Mathematical analysis of an in-host model of viral dynamics with spatial heterogeneity. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1237-1257. doi: 10.3934/dcdsb.2016.21.1237

[15]

John Burke, Edgar Knobloch. Normal form for spatial dynamics in the Swift-Hohenberg equation. Conference Publications, 2007, 2007 (Special) : 170-180. doi: 10.3934/proc.2007.2007.170

[16]

Feng-Bin Wang, Junping Shi, Xingfu Zou. Dynamics of a host-pathogen system on a bounded spatial domain. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2535-2560. doi: 10.3934/cpaa.2015.14.2535

[17]

Lian Duan, Lihong Huang, Chuangxia Huang. Spatial dynamics of a diffusive SIRI model with distinct dispersal rates and heterogeneous environment. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3539-3560. doi: 10.3934/cpaa.2021120

[18]

Ming-Zhen Xin, Bin-Guo Wang. Spatial dynamics of an epidemic model in time almost periodic and space periodic media. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022116

[19]

Alexander S. Bratus, Svetlana Yu. Kovalenko, Elena Fimmel. On viable therapy strategy for a mathematical spatial cancer model describing the dynamics of malignant and healthy cells. Mathematical Biosciences & Engineering, 2015, 12 (1) : 163-183. doi: 10.3934/mbe.2015.12.163

[20]

Shuling Yan, Shangjiang Guo. Dynamics of a Lotka-Volterra competition-diffusion model with stage structure and spatial heterogeneity. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1559-1579. doi: 10.3934/dcdsb.2018059

2021 Impact Factor: 1.41

Metrics

  • PDF downloads (65)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]