-
Previous Article
Asymptotical compliance optimization for connected networks
- NHM Home
- This Issue
-
Next Article
Adjoint calculus for optimization of gas networks
Lyapunov stability analysis of networks of scalar conservation laws
1. | Center for Systems Engineering and Applied Mechanics (CESAME), Department of Mathematical Engineering, Université catholique de Louvain, 4, Avenue G. Lemaître, 1348 Louvain-la-Neuve, Belgium |
2. | Center for Systems Engineering and Applied Mechanics (CESAME), Université Catholique de Louvain, 4, Avenue G. Lemaître, 1348 Louvain-la-Neuve, Belgium |
3. | Département de Mathématiques, Université Paris-Sud, Bâtiment 425, 91405, Orsay |
4. | Centre de Robotique (CAOR), Ecole nationale supérieure des mines de Paris, 60, Boulevard Saint Michel, 75272 Paris Cedex 06, France |
[1] |
Mauro Garavello. A review of conservation laws on networks. Networks and Heterogeneous Media, 2010, 5 (3) : 565-581. doi: 10.3934/nhm.2010.5.565 |
[2] |
Martin Gugat, Alexander Keimer, Günter Leugering, Zhiqiang Wang. Analysis of a system of nonlocal conservation laws for multi-commodity flow on networks. Networks and Heterogeneous Media, 2015, 10 (4) : 749-785. doi: 10.3934/nhm.2015.10.749 |
[3] |
Markus Musch, Ulrik Skre Fjordholm, Nils Henrik Risebro. Well-posedness theory for nonlinear scalar conservation laws on networks. Networks and Heterogeneous Media, 2022, 17 (1) : 101-128. doi: 10.3934/nhm.2021025 |
[4] |
Maria Laura Delle Monache, Paola Goatin. Stability estimates for scalar conservation laws with moving flux constraints. Networks and Heterogeneous Media, 2017, 12 (2) : 245-258. doi: 10.3934/nhm.2017010 |
[5] |
Avner Friedman. Conservation laws in mathematical biology. Discrete and Continuous Dynamical Systems, 2012, 32 (9) : 3081-3097. doi: 10.3934/dcds.2012.32.3081 |
[6] |
Len G. Margolin, Roy S. Baty. Conservation laws in discrete geometry. Journal of Geometric Mechanics, 2019, 11 (2) : 187-203. doi: 10.3934/jgm.2019010 |
[7] |
Mauro Garavello, Roberto Natalini, Benedetto Piccoli, Andrea Terracina. Conservation laws with discontinuous flux. Networks and Heterogeneous Media, 2007, 2 (1) : 159-179. doi: 10.3934/nhm.2007.2.159 |
[8] |
Anupam Sen, T. Raja Sekhar. Structural stability of the Riemann solution for a strictly hyperbolic system of conservation laws with flux approximation. Communications on Pure and Applied Analysis, 2019, 18 (2) : 931-942. doi: 10.3934/cpaa.2019045 |
[9] |
Shuichi Kawashima, Shinya Nishibata, Masataka Nishikawa. Asymptotic stability of stationary waves for two-dimensional viscous conservation laws in half plane. Conference Publications, 2003, 2003 (Special) : 469-476. doi: 10.3934/proc.2003.2003.469 |
[10] |
Wen-Xiu Ma. Conservation laws by symmetries and adjoint symmetries. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : 707-721. doi: 10.3934/dcdss.2018044 |
[11] |
Tai-Ping Liu, Shih-Hsien Yu. Hyperbolic conservation laws and dynamic systems. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 143-145. doi: 10.3934/dcds.2000.6.143 |
[12] |
Yanbo Hu, Wancheng Sheng. The Riemann problem of conservation laws in magnetogasdynamics. Communications on Pure and Applied Analysis, 2013, 12 (2) : 755-769. doi: 10.3934/cpaa.2013.12.755 |
[13] |
Stefano Bianchini, Elio Marconi. On the concentration of entropy for scalar conservation laws. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 73-88. doi: 10.3934/dcdss.2016.9.73 |
[14] |
Christophe Prieur. Control of systems of conservation laws with boundary errors. Networks and Heterogeneous Media, 2009, 4 (2) : 393-407. doi: 10.3934/nhm.2009.4.393 |
[15] |
Alberto Bressan, Marta Lewicka. A uniqueness condition for hyperbolic systems of conservation laws. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 673-682. doi: 10.3934/dcds.2000.6.673 |
[16] |
Rinaldo M. Colombo, Kenneth H. Karlsen, Frédéric Lagoutière, Andrea Marson. Special issue on contemporary topics in conservation laws. Networks and Heterogeneous Media, 2016, 11 (2) : i-ii. doi: 10.3934/nhm.2016.11.2i |
[17] |
Boris Andreianov, Kenneth H. Karlsen, Nils H. Risebro. On vanishing viscosity approximation of conservation laws with discontinuous flux. Networks and Heterogeneous Media, 2010, 5 (3) : 617-633. doi: 10.3934/nhm.2010.5.617 |
[18] |
Laurent Lévi, Julien Jimenez. Coupling of scalar conservation laws in stratified porous media. Conference Publications, 2007, 2007 (Special) : 644-654. doi: 10.3934/proc.2007.2007.644 |
[19] |
Alexander Bobylev, Mirela Vinerean, Åsa Windfäll. Discrete velocity models of the Boltzmann equation and conservation laws. Kinetic and Related Models, 2010, 3 (1) : 35-58. doi: 10.3934/krm.2010.3.35 |
[20] |
Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301 |
2021 Impact Factor: 1.41
Tools
Metrics
Other articles
by authors
[Back to Top]