# American Institute of Mathematical Sciences

March  2007, 2(1): 81-97. doi: 10.3934/nhm.2007.2.81

## Modeling, simulation and optimization of gas networks with compressors

 1 Department of Mathematics, Universität Kaiserslautern, AG Technomathematik, P.O. Box 3049, D-67663 Kaiserslautern, Germany

Received  July 2006 Revised  October 2006 Published  December 2006

We consider gas flow in pipeline networks governed by the isothermal Euler equations and introduce a new modeling of compressors in gas networks. Compressor units are modeled as pipe–to–pipe intersections with additional algebraic coupling conditions for the compressor behavior. We prove existence and uniqueness of solutions with respect to these conditions and use the results for numerical simulation and optimization of gas networks.
Citation: Michael Herty. Modeling, simulation and optimization of gas networks with compressors. Networks and Heterogeneous Media, 2007, 2 (1) : 81-97. doi: 10.3934/nhm.2007.2.81
 [1] Mapundi K. Banda, Michael Herty, Axel Klar. Coupling conditions for gas networks governed by the isothermal Euler equations. Networks and Heterogeneous Media, 2006, 1 (2) : 295-314. doi: 10.3934/nhm.2006.1.295 [2] Michael Herty, Veronika Sachers. Adjoint calculus for optimization of gas networks. Networks and Heterogeneous Media, 2007, 2 (4) : 733-750. doi: 10.3934/nhm.2007.2.733 [3] Quentin Chauleur. The isothermal limit for the compressible Euler equations with damping. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022059 [4] Ju Ge, Wancheng Sheng. The two dimensional gas expansion problem of the Euler equations for the generalized Chaplygin gas. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2733-2748. doi: 10.3934/cpaa.2014.13.2733 [5] Martin Gugat, Markus Dick. Time-delayed boundary feedback stabilization of the isothermal Euler equations with friction. Mathematical Control and Related Fields, 2011, 1 (4) : 469-491. doi: 10.3934/mcrf.2011.1.469 [6] Manwai Yuen. Cylindrical blowup solutions to the isothermal Euler-Poisson equations. Conference Publications, 2011, 2011 (Special) : 1448-1456. doi: 10.3934/proc.2011.2011.1448 [7] Yanbo Hu, Tong Li. The regularity of a degenerate Goursat problem for the 2-D isothermal Euler equations. Communications on Pure and Applied Analysis, 2019, 18 (6) : 3317-3336. doi: 10.3934/cpaa.2019149 [8] Markus Dick, Martin Gugat, Günter Leugering. A strict $H^1$-Lyapunov function and feedback stabilization for the isothermal Euler equations with friction. Numerical Algebra, Control and Optimization, 2011, 1 (2) : 225-244. doi: 10.3934/naco.2011.1.225 [9] Yulan Xu, Yanping Dou. Large BV solutions to Euler equations in the isothermal self-gravitating gases with damping. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1451-1467. doi: 10.3934/cpaa.2009.8.1451 [10] Mapundi K. Banda, Michael Herty, Axel Klar. Gas flow in pipeline networks. Networks and Heterogeneous Media, 2006, 1 (1) : 41-56. doi: 10.3934/nhm.2006.1.41 [11] Martin Gugat, Falk M. Hante, Markus Hirsch-Dick, Günter Leugering. Stationary states in gas networks. Networks and Heterogeneous Media, 2015, 10 (2) : 295-320. doi: 10.3934/nhm.2015.10.295 [12] Huahui Li, Zhiqiang Shao. Delta shocks and vacuum states in vanishing pressure limits of solutions to the relativistic Euler equations for generalized Chaplygin gas. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2373-2400. doi: 10.3934/cpaa.2016041 [13] Fabian Rüffler, Volker Mehrmann, Falk M. Hante. Optimal model switching for gas flow in pipe networks. Networks and Heterogeneous Media, 2018, 13 (4) : 641-661. doi: 10.3934/nhm.2018029 [14] Radu C. Cascaval, Ciro D'Apice, Maria Pia D'Arienzo, Rosanna Manzo. Flow optimization in vascular networks. Mathematical Biosciences & Engineering, 2017, 14 (3) : 607-624. doi: 10.3934/mbe.2017035 [15] Giuseppe Buttazzo, Filippo Santambrogio. Asymptotical compliance optimization for connected networks. Networks and Heterogeneous Media, 2007, 2 (4) : 761-777. doi: 10.3934/nhm.2007.2.761 [16] Yogiraj Mantri, Michael Herty, Sebastian Noelle. Well-balanced scheme for gas-flow in pipeline networks. Networks and Heterogeneous Media, 2019, 14 (4) : 659-676. doi: 10.3934/nhm.2019026 [17] Bernard Ducomet, Alexander Zlotnik. On a regularization of the magnetic gas dynamics system of equations. Kinetic and Related Models, 2013, 6 (3) : 533-543. doi: 10.3934/krm.2013.6.533 [18] Alexander V. Bobylev, Sergey V. Meleshko. On group symmetries of the hydrodynamic equations for rarefied gas. Kinetic and Related Models, 2021, 14 (3) : 469-482. doi: 10.3934/krm.2021012 [19] Ö. Uğur, G. W. Weber. Optimization and dynamics of gene-environment networks with intervals. Journal of Industrial and Management Optimization, 2007, 3 (2) : 357-379. doi: 10.3934/jimo.2007.3.357 [20] Okihiro Sawada. Analytic rates of solutions to the Euler equations. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1409-1415. doi: 10.3934/dcdss.2013.6.1409

2020 Impact Factor: 1.213