June  2008, 3(2): 333-343. doi: 10.3934/nhm.2008.3.333

The simulation of gene knock-out in scale-free random Boolean models of genetic networks


Dipartimento di scienze sociali, cognitive e quantitative, Università di Modena e Reggio Emilia, Via Allegri 9, 42100 Reggio Emilia, Italy, Italy, Italy


Excellence Environmental Carcinogenesis, Environmental Protection and Health Prevention Agency, Emilia-Romagna, viale Filopanti 22, Bologna, Italy


Institute for Biocomplexity and Informatics, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada

Received  August 2007 Revised  February 2008 Published  March 2008

This paper describes the effects of perturbations, which simulate the knock-out of single genes, one at a time, in random Boolean models of genetic networks (RBN). The analysis concentrates on the probability distribution of so-called avalanches (defined in the text) in gene expression. The topology of the random Boolean networks considered here is of the scale-free type, with a power-law distribution of outgoing connectivities. The results for these scale-free random Boolean networks (SFRBN) are compared with those of classical RBNs, which had been previously analyzed, and with experimental data on S. cerevisiae. It is shown that, while both models approximate the main features of the distribution of experimental data, SFRBNs tend to overestimate the number of large avalanches.
Citation: Roberto Serra, Marco Villani, Alex Graudenzi, Annamaria Colacci, Stuart A. Kauffman. The simulation of gene knock-out in scale-free random Boolean models of genetic networks. Networks and Heterogeneous Media, 2008, 3 (2) : 333-343. doi: 10.3934/nhm.2008.3.333

William Chad Young, Adrian E. Raftery, Ka Yee Yeung. A posterior probability approach for gene regulatory network inference in genetic perturbation data. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1241-1251. doi: 10.3934/mbe.2016041


Dong-Uk Hwang, S. Boccaletti, Y. Moreno, R. López-Ruiz. Thresholds for Epidemic Outbreaks in Finite Scale-Free Networks. Mathematical Biosciences & Engineering, 2005, 2 (2) : 317-327. doi: 10.3934/mbe.2005.2.317


Thomas Hillen, Peter Hinow, Zhi-An Wang. Mathematical analysis of a kinetic model for cell movement in network tissues. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 1055-1080. doi: 10.3934/dcdsb.2010.14.1055


Giuseppe Bianchi, Lorenzo Bracciale, Keren Censor-Hillel, Andrea Lincoln, Muriel Médard. The one-out-of-k retrieval problem and linear network coding. Advances in Mathematics of Communications, 2016, 10 (1) : 95-112. doi: 10.3934/amc.2016.10.95


Saeed Assani, Jianlin Jiang, Ahmad Assani, Feng Yang. Scale efficiency of China's regional R & D value chain: A double frontier network DEA approach. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1357-1382. doi: 10.3934/jimo.2020025


Matthias Täufer, Martin Tautenhahn. Scale-free and quantitative unique continuation for infinite dimensional spectral subspaces of Schrödinger operators. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1719-1730. doi: 10.3934/cpaa.2017083


A. Chauviere, T. Hillen, L. Preziosi. Modeling cell movement in anisotropic and heterogeneous network tissues. Networks and Heterogeneous Media, 2007, 2 (2) : 333-357. doi: 10.3934/nhm.2007.2.333


Jiangtao Mo, Liqun Qi, Zengxin Wei. A network simplex algorithm for simple manufacturing network model. Journal of Industrial and Management Optimization, 2005, 1 (2) : 251-273. doi: 10.3934/jimo.2005.1.251


David J. Aldous. A stochastic complex network model. Electronic Research Announcements, 2003, 9: 152-161.


Gabriel Montes-Rojas, Pedro Elosegui. Network ANOVA random effects models for node attributes. Journal of Dynamics and Games, 2020, 7 (3) : 239-252. doi: 10.3934/jdg.2020017


Deena Schmidt, Janet Best, Mark S. Blumberg. Random graph and stochastic process contributions to network dynamics. Conference Publications, 2011, 2011 (Special) : 1279-1288. doi: 10.3934/proc.2011.2011.1279


Jan Lorenz, Stefano Battiston. Systemic risk in a network fragility model analyzed with probability density evolution of persistent random walks. Networks and Heterogeneous Media, 2008, 3 (2) : 185-200. doi: 10.3934/nhm.2008.3.185


Kashi Behrstock, Michel Benaïm, Morris W. Hirsch. Smale strategies for network prisoner's dilemma games. Journal of Dynamics and Games, 2015, 2 (2) : 141-155. doi: 10.3934/jdg.2015.2.141


Philippe Michel, Suman Kumar Tumuluri. A note on a neuron network model with diffusion. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3659-3676. doi: 10.3934/dcdsb.2020085


Gheorghe Craciun, Baltazar Aguda, Avner Friedman. Mathematical Analysis Of A Modular Network Coordinating The Cell Cycle And Apoptosis. Mathematical Biosciences & Engineering, 2005, 2 (3) : 473-485. doi: 10.3934/mbe.2005.2.473


Rajendra K C Khatri, Brendan J Caseria, Yifei Lou, Guanghua Xiao, Yan Cao. Automatic extraction of cell nuclei using dilated convolutional network. Inverse Problems and Imaging, 2021, 15 (1) : 27-40. doi: 10.3934/ipi.2020049


Kangkang Deng, Zheng Peng, Jianli Chen. Sparse probabilistic Boolean network problems: A partial proximal-type operator splitting method. Journal of Industrial and Management Optimization, 2019, 15 (4) : 1881-1896. doi: 10.3934/jimo.2018127


Reihaneh Mostolizadeh, Zahra Afsharnezhad, Anna Marciniak-Czochra. Mathematical model of Chimeric Anti-gene Receptor (CAR) T cell therapy with presence of cytokine. Numerical Algebra, Control and Optimization, 2018, 8 (1) : 63-80. doi: 10.3934/naco.2018004


K. A. Ariyawansa, Leonid Berlyand, Alexander Panchenko. A network model of geometrically constrained deformations of granular materials. Networks and Heterogeneous Media, 2008, 3 (1) : 125-148. doi: 10.3934/nhm.2008.3.125


Adriano Festa, Simone Göttlich, Marion Pfirsching. A model for a network of conveyor belts with discontinuous speed and capacity. Networks and Heterogeneous Media, 2019, 14 (2) : 389-410. doi: 10.3934/nhm.2019016

2021 Impact Factor: 1.41


  • PDF downloads (131)
  • HTML views (0)
  • Cited by (14)

[Back to Top]