June  2008, 3(2): 345-359. doi: 10.3934/nhm.2008.3.345

On the relationships between topological measures in real-world networks

1. 

Delft University of Technology, P.O. Box 5031, Delft, 2600 GA, Netherlands, Netherlands

Received  September 2007 Revised  November 2007 Published  March 2008

Over the past several years, a number of measures have been introduced to characterize the topology of complex networks. We perform a statistical analysis of real data sets, representing the topology of different real-world networks. First, we show that some measures are either fully related to other topological measures or that they are significantly limited in the range of their possible values. Second, we observe that subsets of measures are highly correlated, indicating redundancy among them. Our study thus suggests that the set of commonly used measures is too extensive to concisely characterize the topology of complex networks. It also provides an important basis for classification and unification of a definite set of measures that would serve in future topological studies of complex networks.
Citation: Almerima Jamakovic, Steve Uhlig. On the relationships between topological measures in real-world networks. Networks and Heterogeneous Media, 2008, 3 (2) : 345-359. doi: 10.3934/nhm.2008.3.345
[1]

Abdon Atangana, Zakia Hammouch, Kolade M. Owolabi, Gisele Mephou. Preface: New trends on numerical analysis and analytical methods with their applications to real world problems. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : i-i. doi: 10.3934/dcdss.201903i

[2]

Changjun Yu, Honglei Xu, Kok Lay Teo. Preface: Advances in theory and real world applications of control and dynamic optimization. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : i-iii. doi: 10.3934/dcdss.2020094

[3]

Fabio Camilli, Raul De Maio, Andrea Tosin. Transport of measures on networks. Networks and Heterogeneous Media, 2017, 12 (2) : 191-215. doi: 10.3934/nhm.2017008

[4]

Sharon M. Cameron, Ariel Cintrón-Arias. Prisoner's Dilemma on real social networks: Revisited. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1381-1398. doi: 10.3934/mbe.2013.10.1381

[5]

Zhuwei Qin, Fuxun Yu, Chenchen Liu, Xiang Chen. How convolutional neural networks see the world --- A survey of convolutional neural network visualization methods. Mathematical Foundations of Computing, 2018, 1 (2) : 149-180. doi: 10.3934/mfc.2018008

[6]

Qingyun Wang, Xia Shi, Guanrong Chen. Delay-induced synchronization transition in small-world Hodgkin-Huxley neuronal networks with channel blocking. Discrete and Continuous Dynamical Systems - B, 2011, 16 (2) : 607-621. doi: 10.3934/dcdsb.2011.16.607

[7]

C. Alonso-González, M. I. Camacho, F. Cano. Topological invariants for singularities of real vector fields in dimension three. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 823-847. doi: 10.3934/dcds.2008.20.823

[8]

Mingxing Zhou, Jing Liu, Shuai Wang, Shan He. A comparative study of robustness measures for cancer signaling networks. Big Data & Information Analytics, 2017, 2 (1) : 87-96. doi: 10.3934/bdia.2017011

[9]

Palle E. T. Jorgensen and Steen Pedersen. Orthogonal harmonic analysis of fractal measures. Electronic Research Announcements, 1998, 4: 35-42.

[10]

Jia Cai, Junyi Huo. Sparse generalized canonical correlation analysis via linearized Bregman method. Communications on Pure and Applied Analysis, 2020, 19 (8) : 3933-3945. doi: 10.3934/cpaa.2020173

[11]

Huaning Liu, Xi Liu. On the correlation measures of orders $ 3 $ and $ 4 $ of binary sequence of period $ p^2 $ derived from Fermat quotients. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021008

[12]

George Siopsis. Quantum topological data analysis with continuous variables. Foundations of Data Science, 2019, 1 (4) : 419-431. doi: 10.3934/fods.2019017

[13]

Tyrus Berry, Timothy Sauer. Consistent manifold representation for topological data analysis. Foundations of Data Science, 2019, 1 (1) : 1-38. doi: 10.3934/fods.2019001

[14]

Erik Carlsson, John Gunnar Carlsson, Shannon Sweitzer. Applying topological data analysis to local search problems. Foundations of Data Science, 2022  doi: 10.3934/fods.2022006

[15]

Fabio Ancona, Laura Caravenna, Annalisa Cesaroni, Giuseppe M. Coclite, Claudio Marchi, Andrea Marson. Analysis and control on networks: Trends and perspectives. Networks and Heterogeneous Media, 2017, 12 (3) : i-ii. doi: 10.3934/nhm.201703i

[16]

Fabio Ancona, Laura Caravenna, Annalisa Cesaroni, Giuseppe M. Coclite, Claudio Marchi, Andrea Marson. Analysis and control on networks: Trends and perspectives. Networks and Heterogeneous Media, 2017, 12 (2) : i-ii. doi: 10.3934/nhm.201702i

[17]

Peter Hinow, Edward A. Rietman, Sara Ibrahim Omar, Jack A. Tuszyński. Algebraic and topological indices of molecular pathway networks in human cancers. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1289-1302. doi: 10.3934/mbe.2015.12.1289

[18]

Eva Barrena, Alicia De-Los-Santos, Gilbert Laporte, Juan A. Mesa. Transferability of collective transportation line networks from a topological and passenger demand perspective. Networks and Heterogeneous Media, 2015, 10 (1) : 1-16. doi: 10.3934/nhm.2015.10.1

[19]

Zhihui Yuan. Multifractal analysis of random weak Gibbs measures. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5367-5405. doi: 10.3934/dcds.2017234

[20]

Xueting Tian, Paulo Varandas. Topological entropy of level sets of empirical measures for non-uniformly expanding maps. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5407-5431. doi: 10.3934/dcds.2017235

2020 Impact Factor: 1.213

Metrics

  • PDF downloads (147)
  • HTML views (0)
  • Cited by (24)

Other articles
by authors

[Back to Top]