-
Previous Article
Large time behavior of nonlocal aggregation models with nonlinear diffusion
- NHM Home
- This Issue
-
Next Article
Vertex control of flows in networks
Stability and Riesz basis property of a star-shaped network of Euler-Bernoulli beams with joint damping
1. | Department of Mathematics, Tianjin University, Tianjin, 300072, China |
2. | Department of Mathematics, The University of Hong Kong, Hong Kong, China |
[1] |
Ahmed Bchatnia, Amina Boukhatem. Stability of a damped wave equation on an infinite star-shaped network. Evolution Equations and Control Theory, 2022 doi: 10.3934/eect.2022024 |
[2] |
F. Ali Mehmeti, R. Haller-Dintelmann, V. Régnier. Dispersive waves with multiple tunnel effect on a star-shaped network. Discrete and Continuous Dynamical Systems - S, 2013, 6 (3) : 783-791. doi: 10.3934/dcdss.2013.6.783 |
[3] |
Ammar Khemmoudj, Imane Djaidja. General decay for a viscoelastic rotating Euler-Bernoulli beam. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3531-3557. doi: 10.3934/cpaa.2020154 |
[4] |
Maja Miletić, Dominik Stürzer, Anton Arnold. An Euler-Bernoulli beam with nonlinear damping and a nonlinear spring at the tip. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 3029-3055. doi: 10.3934/dcdsb.2015.20.3029 |
[5] |
Walid Boughamda. Boundary stabilization for a star-shaped network of variable coefficients strings linked by a point mass. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1103-1125. doi: 10.3934/dcdss.2021139 |
[6] |
Fathi Hassine. Asymptotic behavior of the transmission Euler-Bernoulli plate and wave equation with a localized Kelvin-Voigt damping. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1757-1774. doi: 10.3934/dcdsb.2016021 |
[7] |
Mohammad Akil, Ibtissam Issa, Ali Wehbe. Energy decay of some boundary coupled systems involving wave\ Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping. Mathematical Control and Related Fields, 2021 doi: 10.3934/mcrf.2021059 |
[8] |
Farah Abou Shakra. Asymptotics of wave models for non star-shaped geometries. Discrete and Continuous Dynamical Systems - S, 2014, 7 (2) : 347-362. doi: 10.3934/dcdss.2014.7.347 |
[9] |
Zhong-Jie Han, Enrique Zuazua. Decay rates for elastic-thermoelastic star-shaped networks. Networks and Heterogeneous Media, 2017, 12 (3) : 461-488. doi: 10.3934/nhm.2017020 |
[10] |
Scott W. Hansen, Rajeev Rajaram. Riesz basis property and related results for a Rao-Nakra sandwich beam. Conference Publications, 2005, 2005 (Special) : 365-375. doi: 10.3934/proc.2005.2005.365 |
[11] |
Denis Mercier. Spectrum analysis of a serially connected Euler-Bernoulli beams problem. Networks and Heterogeneous Media, 2009, 4 (4) : 709-730. doi: 10.3934/nhm.2009.4.709 |
[12] |
Jong Yeoul Park, Sun Hye Park. On uniform decay for the coupled Euler-Bernoulli viscoelastic system with boundary damping. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 425-436. doi: 10.3934/dcds.2005.12.425 |
[13] |
Takahiro Hashimoto. Nonexistence of global solutions of nonlinear Schrodinger equations in non star-shaped domains. Conference Publications, 2007, 2007 (Special) : 487-494. doi: 10.3934/proc.2007.2007.487 |
[14] |
Helmut Harbrecht, Thorsten Hohage. A Newton method for reconstructing non star-shaped domains in electrical impedance tomography. Inverse Problems and Imaging, 2009, 3 (2) : 353-371. doi: 10.3934/ipi.2009.3.353 |
[15] |
Byung-Soo Lee. Strong convergence theorems with three-step iteration in star-shaped metric spaces. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 371-379. doi: 10.3934/naco.2011.1.371 |
[16] |
Jason Metcalfe, Christopher D. Sogge. Global existence for high dimensional quasilinear wave equations exterior to star-shaped obstacles. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1589-1601. doi: 10.3934/dcds.2010.28.1589 |
[17] |
Giuseppe Maria Coclite, Carlotta Donadello. Vanishing viscosity on a star-shaped graph under general transmission conditions at the node. Networks and Heterogeneous Media, 2020, 15 (2) : 197-213. doi: 10.3934/nhm.2020009 |
[18] |
Kaïs Ammari, Denis Mercier, Virginie Régnier, Julie Valein. Spectral analysis and stabilization of a chain of serially connected Euler-Bernoulli beams and strings. Communications on Pure and Applied Analysis, 2012, 11 (2) : 785-807. doi: 10.3934/cpaa.2012.11.785 |
[19] |
Louis Tebou. Well-posedness and stabilization of an Euler-Bernoulli equation with a localized nonlinear dissipation involving the $p$-Laplacian. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2315-2337. doi: 10.3934/dcds.2012.32.2315 |
[20] |
Louis Tebou. Energy decay estimates for some weakly coupled Euler-Bernoulli and wave equations with indirect damping mechanisms. Mathematical Control and Related Fields, 2012, 2 (1) : 45-60. doi: 10.3934/mcrf.2012.2.45 |
2021 Impact Factor: 1.41
Tools
Metrics
Other articles
by authors
[Back to Top]