December  2008, 3(4): 749-785. doi: 10.3934/nhm.2008.3.749

Large time behavior of nonlocal aggregation models with nonlinear diffusion


Westfälische Wilhelms-Universität Münster, Institutfür Numerische und Angewandte Mathematik, Einsteinstr. 62, D 48149 Münster, Germany


Division of Mathematics for Engineering, Piazzale E. Pontieri, 2 Monteluco di Roio, 67040 L'Aquila, Italy

Received  November 2007 Revised  May 2008 Published  October 2008

The aim of this paper is to establish rigorous results on the large time behavior of nonlocal models for aggregation, including the possible presence of nonlinear diffusion terms modeling local repulsions. We show that, as expected from the practical motivation as well as from numerical simulations, one obtains concentrated densities (Dirac $\delta$ distributions) as stationary solutions and large time limits in the absence of diffusion. In addition, we provide a comparison for aggregation kernels with infinite respectively finite support. In the first case, there is a unique stationary solution corresponding to concentration at the center of mass, and all solutions of the evolution problem converge to the stationary solution for large time. The speed of convergence in this case is just determined by the behavior of the aggregation kernels at zero, yielding either algebraic or exponential decay or even finite time extinction. For kernels with finite support, we show that an infinite number of stationary solutions exist, and solutions of the evolution problem converge only in a measure-valued sense to the set of stationary solutions, which we characterize in detail.
Moreover, we also consider the behavior in the presence of nonlinear diffusion terms, the most interesting case being the one of small diffusion coefficients. Via the implicit function theorem we give a quite general proof of a rather natural assertion for such models, namely that there exist stationary solutions that have the form of a local peak around the center of mass. Our approach even yields the order of the size of the support in terms of the diffusion coefficients.
All these results are obtained via a reformulation of the equations considered using the Wasserstein metric for probability measures, and are carried out in the case of a single spatial dimension.
Citation: Martin Burger, Marco Di Francesco. Large time behavior of nonlocal aggregation models with nonlinear diffusion. Networks & Heterogeneous Media, 2008, 3 (4) : 749-785. doi: 10.3934/nhm.2008.3.749

Dong Li, Xiaoyi Zhang. On a nonlocal aggregation model with nonlinear diffusion. Discrete & Continuous Dynamical Systems, 2010, 27 (1) : 301-323. doi: 10.3934/dcds.2010.27.301


Carmen Cortázar, Manuel Elgueta, Fernando Quirós, Noemí Wolanski. Asymptotic behavior for a nonlocal diffusion equation on the half line. Discrete & Continuous Dynamical Systems, 2015, 35 (4) : 1391-1407. doi: 10.3934/dcds.2015.35.1391


Bhargav Kumar Kakumani, Suman Kumar Tumuluri. Asymptotic behavior of the solution of a diffusion equation with nonlocal boundary conditions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 407-419. doi: 10.3934/dcdsb.2017019


Giuseppe Da Prato, Arnaud Debussche. Asymptotic behavior of stochastic PDEs with random coefficients. Discrete & Continuous Dynamical Systems, 2010, 27 (4) : 1553-1570. doi: 10.3934/dcds.2010.27.1553


Lie Zheng. Asymptotic behavior of solutions to the nonlinear breakage equations. Communications on Pure & Applied Analysis, 2005, 4 (2) : 463-473. doi: 10.3934/cpaa.2005.4.463


Yongqin Liu. Asymptotic behavior of solutions to a nonlinear plate equation with memory. Communications on Pure & Applied Analysis, 2017, 16 (2) : 533-556. doi: 10.3934/cpaa.2017027


Irena Lasiecka, W. Heyman. Asymptotic behavior of solutions in nonlinear dynamic elasticity. Discrete & Continuous Dynamical Systems, 1995, 1 (2) : 237-252. doi: 10.3934/dcds.1995.1.237


Georges Chamoun, Moustafa Ibrahim, Mazen Saad, Raafat Talhouk. Asymptotic behavior of solutions of a nonlinear degenerate chemotaxis model. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4165-4188. doi: 10.3934/dcdsb.2020092


Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258


Pengchao Lai, Qi Li. Asymptotic behavior for the solutions to a bistable-bistable reaction diffusion equation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021186


Limei Dai. Entire solutions with asymptotic behavior of fully nonlinear uniformly elliptic equations. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1707-1714. doi: 10.3934/cpaa.2011.10.1707


P. R. Zingano. Asymptotic behavior of the $L^1$ norm of solutions to nonlinear parabolic equations. Communications on Pure & Applied Analysis, 2004, 3 (1) : 151-159. doi: 10.3934/cpaa.2004.3.151


Nakao Hayashi, Pavel I. Naumkin. Asymptotic behavior in time of solutions to the derivative nonlinear Schrödinger equation revisited. Discrete & Continuous Dynamical Systems, 1997, 3 (3) : 383-400. doi: 10.3934/dcds.1997.3.383


Andrea L. Bertozzi, Dejan Slepcev. Existence and uniqueness of solutions to an aggregation equation with degenerate diffusion. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1617-1637. doi: 10.3934/cpaa.2010.9.1617


Wenbin Yang, Yujing Gao, Xiaojuan Wang. Diffusion modeling of tumor-CD4$ ^+ $-cytokine interactions with treatments: asymptotic behavior and stationary patterns. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021090


Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229


Julián Fernández Bonder, Analía Silva, Juan F. Spedaletti. Gamma convergence and asymptotic behavior for eigenvalues of nonlocal problems. Discrete & Continuous Dynamical Systems, 2021, 41 (5) : 2125-2140. doi: 10.3934/dcds.2020355


Marianne Beringhier, Adrien Leygue, Francisco Chinesta. Parametric nonlinear PDEs with multiple solutions: A PGD approach. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 383-392. doi: 10.3934/dcdss.2016002


Swann Marx, Tillmann Weisser, Didier Henrion, Jean Bernard Lasserre. A moment approach for entropy solutions to nonlinear hyperbolic PDEs. Mathematical Control & Related Fields, 2020, 10 (1) : 113-140. doi: 10.3934/mcrf.2019032


Marco Di Francesco, Alexander Lorz, Peter A. Markowich. Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1437-1453. doi: 10.3934/dcds.2010.28.1437

2020 Impact Factor: 1.213


  • PDF downloads (86)
  • HTML views (0)
  • Cited by (59)

Other articles
by authors

[Back to Top]