
Previous Article
On the derivation of linear elasticity from atomistic models
 NHM Home
 This Issue

Next Article
A nonMarkovian model of rill erosion
A mathematical model relevant for weakening of chalk reservoirs due to chemical reactions
1.  International Research Institute of Stavanger (IRIS), Prof. Olav Hanssensvei 15, NO4068 Stavanger, Norway 
2.  University of Stavanger (UiS), 4036 Stavanger, Norway, Norway 
[1] 
Danielle Hilhorst, Hideki Murakawa. Singular limit analysis of a reactiondiffusion system with precipitation and dissolution in a porous medium. Networks & Heterogeneous Media, 2014, 9 (4) : 669682. doi: 10.3934/nhm.2014.9.669 
[2] 
T. L. van Noorden, I. S. Pop, M. Röger. Crystal dissolution and precipitation in porous media: L$^1$contraction and uniqueness. Conference Publications, 2007, 2007 (Special) : 10131020. doi: 10.3934/proc.2007.2007.1013 
[3] 
Cedric Galusinski, Mazen Saad. Watergas flow in porous media. Conference Publications, 2005, 2005 (Special) : 307316. doi: 10.3934/proc.2005.2005.307 
[4] 
Steinar Evje, Aksel Hiorth. A mathematical model for dynamic wettability alteration controlled by waterrock chemistry. Networks & Heterogeneous Media, 2010, 5 (2) : 217256. doi: 10.3934/nhm.2010.5.217 
[5] 
Markus Gahn. Multiscale modeling of processes in porous media  coupling reactiondiffusion processes in the solid and the fluid phase and on the separating interfaces. Discrete & Continuous Dynamical Systems  B, 2019, 24 (12) : 65116531. doi: 10.3934/dcdsb.2019151 
[6] 
Igor Pažanin, Marcone C. Pereira. On the nonlinear convectiondiffusionreaction problem in a thin domain with a weak boundary absorption. Communications on Pure & Applied Analysis, 2018, 17 (2) : 579592. doi: 10.3934/cpaa.2018031 
[7] 
ShinJa Jeong, MiYoung Kim. Computational aspects of the multiscale discontinuous Galerkin method for convectiondiffusionreaction problems. Electronic Research Archive, 2021, 29 (2) : 19912006. doi: 10.3934/era.2020101 
[8] 
Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski. The existence of weak solutions to immiscible compressible twophase flow in porous media: The case of fields with different rocktypes. Discrete & Continuous Dynamical Systems  B, 2013, 18 (5) : 12171251. doi: 10.3934/dcdsb.2013.18.1217 
[9] 
Ivan Gentil, Bogusław Zegarlinski. Asymptotic behaviour of reversible chemical reactiondiffusion equations. Kinetic & Related Models, 2010, 3 (3) : 427444. doi: 10.3934/krm.2010.3.427 
[10] 
Clément Cancès. On the effects of discontinuous capillarities for immiscible twophase flows in porous media made of several rocktypes. Networks & Heterogeneous Media, 2010, 5 (3) : 635647. doi: 10.3934/nhm.2010.5.635 
[11] 
María Anguiano, Renata Bunoiu. Homogenization of Bingham flow in thin porous media. Networks & Heterogeneous Media, 2020, 15 (1) : 87110. doi: 10.3934/nhm.2020004 
[12] 
Cédric Galusinski, Mazen Saad. A nonlinear degenerate system modelling watergas flows in porous media. Discrete & Continuous Dynamical Systems  B, 2008, 9 (2) : 281308. doi: 10.3934/dcdsb.2008.9.281 
[13] 
Matthieu Alfaro, Thomas Giletti. Varying the direction of propagation in reactiondiffusion equations in periodic media. Networks & Heterogeneous Media, 2016, 11 (3) : 369393. doi: 10.3934/nhm.2016001 
[14] 
Jifa Jiang, Junping Shi. Dynamics of a reactiondiffusion system of autocatalytic chemical reaction. Discrete & Continuous Dynamical Systems, 2008, 21 (1) : 245258. doi: 10.3934/dcds.2008.21.245 
[15] 
Ioana Ciotir. Stochastic porous media equations with divergence Itô noise. Evolution Equations & Control Theory, 2020, 9 (2) : 375398. doi: 10.3934/eect.2020010 
[16] 
Ting Zhang. The modeling error of well treatment for unsteady flow in porous media. Discrete & Continuous Dynamical Systems  B, 2015, 20 (7) : 21712185. doi: 10.3934/dcdsb.2015.20.2171 
[17] 
Petr Knobloch. Error estimates for a nonlinear local projection stabilization of transient convectiondiffusionreaction equations. Discrete & Continuous Dynamical Systems  S, 2015, 8 (5) : 901911. doi: 10.3934/dcdss.2015.8.901 
[18] 
Diego Berti, Andrea Corli, Luisa Malaguti. Wavefronts for degenerate diffusionconvection reaction equations with signchanging diffusivity. Discrete & Continuous Dynamical Systems, 2021, 41 (12) : 60236046. doi: 10.3934/dcds.2021105 
[19] 
Qiang Du, Zhan Huang, Richard B. Lehoucq. Nonlocal convectiondiffusion volumeconstrained problems and jump processes. Discrete & Continuous Dynamical Systems  B, 2014, 19 (2) : 373389. doi: 10.3934/dcdsb.2014.19.373 
[20] 
Patrick De Kepper, István Szalai. An effective design method to produce stationary chemical reactiondiffusion patterns. Communications on Pure & Applied Analysis, 2012, 11 (1) : 189207. doi: 10.3934/cpaa.2012.11.189 
2020 Impact Factor: 1.213
Tools
Metrics
Other articles
by authors
[Back to Top]