• Previous Article
    Remarks on discretizations of convection terms in Hybrid mimetic mixed methods
  • NHM Home
  • This Issue
  • Next Article
    Theoretical and numerical aspects of the interfacial coupling: The scalar Riemann problem and an application to multiphase flows
September  2010, 5(3): 525-544. doi: 10.3934/nhm.2010.5.525

A distributed model of traffic flows on extended regions


DEI, Politecnico di Milano, V. Ponzio 35/5, 20133 Milano, Italy


MOX, Dipartimento di Matematica "F. Brioschi”, Politecnico di Milano, P. L. da Vinci 32, 20133 Milano, Italy


IACS/CMCS, Chair of Modeling and Scientific Computing, EPFL, Station 8, CH-1015 Lausanne, Switzerland

Received  January 2010 Revised  April 2010 Published  July 2010

This work deals with the modelling of traffic flows in complex networks, spanning two-dimensional regions whose size ( macroscale ) is much greater than the characteristic size of the network arcs ( microscale). A typical example is the modelling of traffic flow in large urbanized areas with diameter of hundreds of kilometers, where standard models of traffic flows on networks resolving all the streets are computationally too expensive. Starting from a stochastic lattice gas model with simple constitutive laws, we derive a distributed two-dimensional model of traffic flow, in the form of a non-linear diffusion-advection equation for the particle density. The equation is formally equivalent to a (non-linear) Darcy's filtration law. In particular, it contains two parameters that can be seen as the porosity and the permeability tensor of the network. We provide suitable algorithms to extract these parameters starting from the geometry of the network and a given microscale model of traffic flow (for instance based on cellular automata). Finally, we compare the fully microscopic simulation with the finite element solution of our upscaled model in realistic cases, showing that our model is able to capture the large-scale feature of the flow.
Citation: Fabio Della Rossa, Carlo D’Angelo, Alfio Quarteroni. A distributed model of traffic flows on extended regions. Networks and Heterogeneous Media, 2010, 5 (3) : 525-544. doi: 10.3934/nhm.2010.5.525

Michael Herty, Reinhard Illner. Analytical and numerical investigations of refined macroscopic traffic flow models. Kinetic and Related Models, 2010, 3 (2) : 311-333. doi: 10.3934/krm.2010.3.311


Paola Goatin, Elena Rossi. Comparative study of macroscopic traffic flow models at road junctions. Networks and Heterogeneous Media, 2020, 15 (2) : 261-279. doi: 10.3934/nhm.2020012


T.K. Subrahmonian Moothathu. Homogeneity of surjective cellular automata. Discrete and Continuous Dynamical Systems, 2005, 13 (1) : 195-202. doi: 10.3934/dcds.2005.13.195


Achilles Beros, Monique Chyba, Oleksandr Markovichenko. Controlled cellular automata. Networks and Heterogeneous Media, 2019, 14 (1) : 1-22. doi: 10.3934/nhm.2019001


Pierre Degond, Cécile Appert-Rolland, Julien Pettré, Guy Theraulaz. Vision-based macroscopic pedestrian models. Kinetic and Related Models, 2013, 6 (4) : 809-839. doi: 10.3934/krm.2013.6.809


Marcus Pivato. Invariant measures for bipermutative cellular automata. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 723-736. doi: 10.3934/dcds.2005.12.723


Michael Herty, Gabriella Puppo, Sebastiano Roncoroni, Giuseppe Visconti. The BGK approximation of kinetic models for traffic. Kinetic and Related Models, 2020, 13 (2) : 279-307. doi: 10.3934/krm.2020010


Achilles Beros, Monique Chyba, Kari Noe. Co-evolving cellular automata for morphogenesis. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2053-2071. doi: 10.3934/dcdsb.2019084


N. Bellomo, A. Bellouquid. From a class of kinetic models to the macroscopic equations for multicellular systems in biology. Discrete and Continuous Dynamical Systems - B, 2004, 4 (1) : 59-80. doi: 10.3934/dcdsb.2004.4.59


Tadahisa Funaki, Hirofumi Izuhara, Masayasu Mimura, Chiyori Urabe. A link between microscopic and macroscopic models of self-organized aggregation. Networks and Heterogeneous Media, 2012, 7 (4) : 705-740. doi: 10.3934/nhm.2012.7.705


Alberto Bressan, Khai T. Nguyen. Conservation law models for traffic flow on a network of roads. Networks and Heterogeneous Media, 2015, 10 (2) : 255-293. doi: 10.3934/nhm.2015.10.255


Johanna Ridder, Wen Shen. Traveling waves for nonlocal models of traffic flow. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 4001-4040. doi: 10.3934/dcds.2019161


Tong Li. Qualitative analysis of some PDE models of traffic flow. Networks and Heterogeneous Media, 2013, 8 (3) : 773-781. doi: 10.3934/nhm.2013.8.773


Paola Goatin. Traffic flow models with phase transitions on road networks. Networks and Heterogeneous Media, 2009, 4 (2) : 287-301. doi: 10.3934/nhm.2009.4.287


Mauro Garavello, Benedetto Piccoli. On fluido-dynamic models for urban traffic. Networks and Heterogeneous Media, 2009, 4 (1) : 107-126. doi: 10.3934/nhm.2009.4.107


Michael Herty, Lorenzo Pareschi. Fokker-Planck asymptotics for traffic flow models. Kinetic and Related Models, 2010, 3 (1) : 165-179. doi: 10.3934/krm.2010.3.165


Guillaume Bal, Olivier Pinaud. Self-averaging of kinetic models for waves in random media. Kinetic and Related Models, 2008, 1 (1) : 85-100. doi: 10.3934/krm.2008.1.85


Bernard Host, Alejandro Maass, Servet Martínez. Uniform Bernoulli measure in dynamics of permutative cellular automata with algebraic local rules. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1423-1446. doi: 10.3934/dcds.2003.9.1423


Marcelo Sobottka. Right-permutative cellular automata on topological Markov chains. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 1095-1109. doi: 10.3934/dcds.2008.20.1095


Xinxin Tan, Shujuan Li, Sisi Liu, Zhiwei Zhao, Lisa Huang, Jiatai Gang. Dynamic simulation of a SEIQR-V epidemic model based on cellular automata. Numerical Algebra, Control and Optimization, 2015, 5 (4) : 327-337. doi: 10.3934/naco.2015.5.327

2020 Impact Factor: 1.213


  • PDF downloads (134)
  • HTML views (0)
  • Cited by (10)

[Back to Top]