• Previous Article
    The heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift
  • NHM Home
  • This Issue
  • Next Article
    Coupling conditions for the $3\times 3$ Euler system
December  2010, 5(4): 691-709. doi: 10.3934/nhm.2010.5.691

Classical solutions and feedback stabilization for the gas flow in a sequence of pipes

1. 

Lehrstuhl 2 für Angewandte Mathematik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstr. 3, 91058 Erlangen, Germany, Germany

Received  February 2010 Revised  August 2010 Published  November 2010

We consider the subcritical flow in gas networks consisting of a finite linear sequence of pipes coupled by compressor stations. Such networks are important for the transportation of natural gas over large distances to ensure sustained gas supply. We analyse the system dynamics in terms of Riemann invariants and study stationary solutions as well as classical non-stationary solutions for a given finite time interval. Furthermore, we construct feedback laws to stabilize the system locally around a given stationary state. To do so we use a Lyapunov function and prove exponential decay with respect to the $L^2$-norm.
Citation: Markus Dick, Martin Gugat, Günter Leugering. Classical solutions and feedback stabilization for the gas flow in a sequence of pipes. Networks and Heterogeneous Media, 2010, 5 (4) : 691-709. doi: 10.3934/nhm.2010.5.691
References:
[1]

M. K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations, Netw. Heterog. Media, 1 (2006), 295-314.

[2]

M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks, Netw. Heterog. Media, 1 (2006), 41-56.

[3]

J. F. Bonnans and J. André, "Optimal Structure of Gas Transmission Trunklines," Research Report available at Centre de recherche INRIA Saclay, January 7, 2009.

[4]

R. M. Colombo, G. Guerra, M. Herty and V. Schleper, Optimal control in networks of pipes and canals, SIAM J. Control Optim., 48 (2009), 2032-2050. doi: 10.1137/080716372.

[5]

R. M. Colombo, M. Herty and V. Sachers, On 2 $\times$ 2 conservation laws at a junction, SIAM J. Math. Anal., 40 (2008), 605-622. doi: 10.1137/070690298.

[6]

J.-M. Coron, B. d'Andréa-Novel and G. Bastin, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws, IEEE Trans. Automat. Control, 52 (2007), 2-11. doi: 10.1109/TAC.2006.887903.

[7]

M. Gugat, Optimal nodal control of networked hyperbolic systems: Evaluation of derivatives, Adv. Model. Optim., 7 (2005), 9-37.

[8]

M. Gugat and M. Herty, Existence of classical solutions and feedback stabilization for the flow in gas networks, ESAIM Control Optim. Calc. Var., published online August 11, 2009.

[9]

M. Gugat and M. Sigalotti, Stars of vibrating strings: Switching boundary feedback stabilization, Netw. Heterog. Media, 5 (2010), 299-314. doi: 10.3934/nhm.2010.5.299.

[10]

M. Herty, J. Mohring and V. Sachers, A new model for gas flow in pipe networks, Math. Methods Appl. Sci., 33 (2010), 845-855.

[11]

M. Herty and V. Sachers, Adjoint calculus for optimization of gas networks, Netw. Heterog. Media, 2 (2007), 731-748.

[12]

G. Leugering and E. J. P. G. Schmidt, On the modelling and stabilization of flows in networks of open canals, SIAM J. Control Optim., 41 (2002), 164-180. doi: 10.1137/S0363012900375664.

[13]

T. Li, B. Rao and Z. Wang, Exact boundary controllability and observability for first order quasilinear hyperbolic systems with a kind of nonlocal boundary conditions, Discrete Contin. Dyn. Syst., 28 (2010), 243-257. doi: 10.3934/dcds.2010.28.243.

[14]

, Nord Stream AG,, www.nord-stream.com, (). 

[15]

A. Osiadacz, "Simulation and Analysis of Gas Networks," Gulf Publishing Company, Houston, 1987.

[16]

A. Osiadacz and M. Chaczykowski, "Comparison of Isothermal and Non-Isothermal Transient Models," Technical Report available at Warsaw University of Technology, 1998.

[17]

A. Osiadacz and M. Chaczykowski, Comparison of isothermal and non-isothermal pipeline gas flow models, Chemical Engineering J., 81 (2001), 41-51. doi: 10.1016/S1385-8947(00)00194-7.

[18]

, Pipeline Simulation Interest Group,, www.psig.org, (). 

[19]

E. Sletfjerding and J. S. Gudmundsson, Friction factor in high pressure natural gas pipelines from roughness measurements, International Gas Research Conference, Amsterdam, November 5-8, 2001.

[20]

M. C. Steinbach, On PDE solution in transient optimization of gas networks, J. Comput. Appl. Math., 203 (2007), 345-361. doi: 10.1016/j.cam.2006.04.018.

[21]

Z. Wang, Exact controllability for nonautonomous first order quasilinear hyperbolic systems, Chin. Ann. Math. Ser. B, 27 (2006), 643-656. doi: 10.1007/s11401-005-0520-2.

show all references

References:
[1]

M. K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations, Netw. Heterog. Media, 1 (2006), 295-314.

[2]

M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks, Netw. Heterog. Media, 1 (2006), 41-56.

[3]

J. F. Bonnans and J. André, "Optimal Structure of Gas Transmission Trunklines," Research Report available at Centre de recherche INRIA Saclay, January 7, 2009.

[4]

R. M. Colombo, G. Guerra, M. Herty and V. Schleper, Optimal control in networks of pipes and canals, SIAM J. Control Optim., 48 (2009), 2032-2050. doi: 10.1137/080716372.

[5]

R. M. Colombo, M. Herty and V. Sachers, On 2 $\times$ 2 conservation laws at a junction, SIAM J. Math. Anal., 40 (2008), 605-622. doi: 10.1137/070690298.

[6]

J.-M. Coron, B. d'Andréa-Novel and G. Bastin, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws, IEEE Trans. Automat. Control, 52 (2007), 2-11. doi: 10.1109/TAC.2006.887903.

[7]

M. Gugat, Optimal nodal control of networked hyperbolic systems: Evaluation of derivatives, Adv. Model. Optim., 7 (2005), 9-37.

[8]

M. Gugat and M. Herty, Existence of classical solutions and feedback stabilization for the flow in gas networks, ESAIM Control Optim. Calc. Var., published online August 11, 2009.

[9]

M. Gugat and M. Sigalotti, Stars of vibrating strings: Switching boundary feedback stabilization, Netw. Heterog. Media, 5 (2010), 299-314. doi: 10.3934/nhm.2010.5.299.

[10]

M. Herty, J. Mohring and V. Sachers, A new model for gas flow in pipe networks, Math. Methods Appl. Sci., 33 (2010), 845-855.

[11]

M. Herty and V. Sachers, Adjoint calculus for optimization of gas networks, Netw. Heterog. Media, 2 (2007), 731-748.

[12]

G. Leugering and E. J. P. G. Schmidt, On the modelling and stabilization of flows in networks of open canals, SIAM J. Control Optim., 41 (2002), 164-180. doi: 10.1137/S0363012900375664.

[13]

T. Li, B. Rao and Z. Wang, Exact boundary controllability and observability for first order quasilinear hyperbolic systems with a kind of nonlocal boundary conditions, Discrete Contin. Dyn. Syst., 28 (2010), 243-257. doi: 10.3934/dcds.2010.28.243.

[14]

, Nord Stream AG,, www.nord-stream.com, (). 

[15]

A. Osiadacz, "Simulation and Analysis of Gas Networks," Gulf Publishing Company, Houston, 1987.

[16]

A. Osiadacz and M. Chaczykowski, "Comparison of Isothermal and Non-Isothermal Transient Models," Technical Report available at Warsaw University of Technology, 1998.

[17]

A. Osiadacz and M. Chaczykowski, Comparison of isothermal and non-isothermal pipeline gas flow models, Chemical Engineering J., 81 (2001), 41-51. doi: 10.1016/S1385-8947(00)00194-7.

[18]

, Pipeline Simulation Interest Group,, www.psig.org, (). 

[19]

E. Sletfjerding and J. S. Gudmundsson, Friction factor in high pressure natural gas pipelines from roughness measurements, International Gas Research Conference, Amsterdam, November 5-8, 2001.

[20]

M. C. Steinbach, On PDE solution in transient optimization of gas networks, J. Comput. Appl. Math., 203 (2007), 345-361. doi: 10.1016/j.cam.2006.04.018.

[21]

Z. Wang, Exact controllability for nonautonomous first order quasilinear hyperbolic systems, Chin. Ann. Math. Ser. B, 27 (2006), 643-656. doi: 10.1007/s11401-005-0520-2.

[1]

Suoqin Jin, Fang-Xiang Wu, Xiufen Zou. Domain control of nonlinear networked systems and applications to complex disease networks. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2169-2206. doi: 10.3934/dcdsb.2017091

[2]

Mapundi K. Banda, Michael Herty, Axel Klar. Gas flow in pipeline networks. Networks and Heterogeneous Media, 2006, 1 (1) : 41-56. doi: 10.3934/nhm.2006.1.41

[3]

Martin Gugat, Falk M. Hante, Markus Hirsch-Dick, Günter Leugering. Stationary states in gas networks. Networks and Heterogeneous Media, 2015, 10 (2) : 295-320. doi: 10.3934/nhm.2015.10.295

[4]

Michael Herty, Veronika Sachers. Adjoint calculus for optimization of gas networks. Networks and Heterogeneous Media, 2007, 2 (4) : 733-750. doi: 10.3934/nhm.2007.2.733

[5]

H. N. Mhaskar, T. Poggio. Function approximation by deep networks. Communications on Pure and Applied Analysis, 2020, 19 (8) : 4085-4095. doi: 10.3934/cpaa.2020181

[6]

Uwe Helmke, Michael Schönlein. Minimum sensitivity realizations of networks of linear systems. Numerical Algebra, Control and Optimization, 2016, 6 (3) : 241-262. doi: 10.3934/naco.2016010

[7]

Ahmadreza Argha, Steven W. Su, Lin Ye, Branko G. Celler. Optimal sparse output feedback for networked systems with parametric uncertainties. Numerical Algebra, Control and Optimization, 2019, 9 (3) : 283-295. doi: 10.3934/naco.2019019

[8]

Fabian Rüffler, Volker Mehrmann, Falk M. Hante. Optimal model switching for gas flow in pipe networks. Networks and Heterogeneous Media, 2018, 13 (4) : 641-661. doi: 10.3934/nhm.2018029

[9]

Michael Herty. Modeling, simulation and optimization of gas networks with compressors. Networks and Heterogeneous Media, 2007, 2 (1) : 81-97. doi: 10.3934/nhm.2007.2.81

[10]

Zhi-Qiang Shao. Lifespan of classical discontinuous solutions to the generalized nonlinear initial-boundary Riemann problem for hyperbolic conservation laws with small BV data: shocks and contact discontinuities. Communications on Pure and Applied Analysis, 2015, 14 (3) : 759-792. doi: 10.3934/cpaa.2015.14.759

[11]

Georges Bastin, B. Haut, Jean-Michel Coron, Brigitte d'Andréa-Novel. Lyapunov stability analysis of networks of scalar conservation laws. Networks and Heterogeneous Media, 2007, 2 (4) : 751-759. doi: 10.3934/nhm.2007.2.751

[12]

Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2021, 8 (2) : 131-152. doi: 10.3934/jcd.2021006

[13]

Delio Mugnolo, René Pröpper. Gradient systems on networks. Conference Publications, 2011, 2011 (Special) : 1078-1090. doi: 10.3934/proc.2011.2011.1078

[14]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[15]

Leslaw Skrzypek, Yuncheng You. Feedback synchronization of FHN cellular neural networks. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6047-6056. doi: 10.3934/dcdsb.2021001

[16]

Lihui Guo, Tong Li, Gan Yin. The vanishing pressure limits of Riemann solutions to the Chaplygin gas equations with a source term. Communications on Pure and Applied Analysis, 2017, 16 (1) : 295-310. doi: 10.3934/cpaa.2017014

[17]

Weishi Liu. Multiple viscous wave fan profiles for Riemann solutions of hyperbolic systems of conservation laws. Discrete and Continuous Dynamical Systems, 2004, 10 (4) : 871-884. doi: 10.3934/dcds.2004.10.871

[18]

João Borges de Sousa, Bernardo Maciel, Fernando Lobo Pereira. Sensor systems on networked vehicles. Networks and Heterogeneous Media, 2009, 4 (2) : 223-247. doi: 10.3934/nhm.2009.4.223

[19]

Yogiraj Mantri, Michael Herty, Sebastian Noelle. Well-balanced scheme for gas-flow in pipeline networks. Networks and Heterogeneous Media, 2019, 14 (4) : 659-676. doi: 10.3934/nhm.2019026

[20]

Mapundi K. Banda, Michael Herty, Axel Klar. Coupling conditions for gas networks governed by the isothermal Euler equations. Networks and Heterogeneous Media, 2006, 1 (2) : 295-314. doi: 10.3934/nhm.2006.1.295

2020 Impact Factor: 1.213

Metrics

  • PDF downloads (150)
  • HTML views (0)
  • Cited by (34)

Other articles
by authors

[Back to Top]