-
Previous Article
Groundwater flow in a fissurised porous stratum
- NHM Home
- This Issue
-
Next Article
The heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift
Non-existence of positive stationary solutions for a class of semi-linear PDEs with random coefficients
1. | Equipe BIOSP, INRA Avignon, Domaine Saint Paul, Site Agroparc, 84914 Avignon cedex 9, France |
2. | Department of Mathematical Sciences, University of Bath, Bath, BA2 7AY, United Kingdom |
3. | Mathematisches Institut der Universität Leipzig, PF 100920, Leipzig, Germany |
References:
[1] |
S. Brazovsii and T. Nattermann, Pinning and sliding of driven elastic systems: From domain walls to charge density waves, Advances in Physics, 53 (2004), 177-252.
doi: 10.1080/00018730410001684197. |
[2] |
L. A. Caffarelli, P. E. Souganidis and L. Wang, Homogenization of fully nonlinear, uniformly elliptic and parabolic partial differential equations in stationary ergodic media, Comm. Pure Appl. Math., 58 (2005), 319-361.
doi: 10.1002/cpa.20069. |
[3] |
N. Dirr, G. Karali and N. K. Yip, Pulsating wave for mean curvature flow in inhomogeneous medium, European Journal of Applied Mathematics, 19 (2008), 661-699.
doi: 10.1017/S095679250800764X. |
[4] |
N. Dirr and N. K. Yip, Pinning and de-pinning phenomena in front propagation in heterogeneous media, Interfaces and Free Boundaries, 8 (2006), 79-109.
doi: 10.4171/IFB/136. |
[5] |
G. R. Grimmett and D. R. Stirzaker, "Probability and Random Processes," Oxford University Press, Oxford, 1992. |
[6] |
P.-L. Lions and P. E. Souganidis, Homogenization of degenerate second-order PDE in periodic and almost periodic environments and applications, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 667-677.
doi: 10.1016/j.anihpc.2004.10.009. |
[7] |
L. Nirenberg, A strong maximum principle for parabolic equations, Comm. Pure Appl. Math., 6 (1953), 167-177.
doi: 10.1002/cpa.3160060202. |
[8] |
J. Xin, "An Introduction to Fronts in Random Media," Springer, New York, 2009.
doi: 10.1007/978-0-387-87683-2. |
show all references
References:
[1] |
S. Brazovsii and T. Nattermann, Pinning and sliding of driven elastic systems: From domain walls to charge density waves, Advances in Physics, 53 (2004), 177-252.
doi: 10.1080/00018730410001684197. |
[2] |
L. A. Caffarelli, P. E. Souganidis and L. Wang, Homogenization of fully nonlinear, uniformly elliptic and parabolic partial differential equations in stationary ergodic media, Comm. Pure Appl. Math., 58 (2005), 319-361.
doi: 10.1002/cpa.20069. |
[3] |
N. Dirr, G. Karali and N. K. Yip, Pulsating wave for mean curvature flow in inhomogeneous medium, European Journal of Applied Mathematics, 19 (2008), 661-699.
doi: 10.1017/S095679250800764X. |
[4] |
N. Dirr and N. K. Yip, Pinning and de-pinning phenomena in front propagation in heterogeneous media, Interfaces and Free Boundaries, 8 (2006), 79-109.
doi: 10.4171/IFB/136. |
[5] |
G. R. Grimmett and D. R. Stirzaker, "Probability and Random Processes," Oxford University Press, Oxford, 1992. |
[6] |
P.-L. Lions and P. E. Souganidis, Homogenization of degenerate second-order PDE in periodic and almost periodic environments and applications, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 667-677.
doi: 10.1016/j.anihpc.2004.10.009. |
[7] |
L. Nirenberg, A strong maximum principle for parabolic equations, Comm. Pure Appl. Math., 6 (1953), 167-177.
doi: 10.1002/cpa.3160060202. |
[8] |
J. Xin, "An Introduction to Fronts in Random Media," Springer, New York, 2009.
doi: 10.1007/978-0-387-87683-2. |
[1] |
Giuseppe Da Prato, Arnaud Debussche. Asymptotic behavior of stochastic PDEs with random coefficients. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1553-1570. doi: 10.3934/dcds.2010.27.1553 |
[2] |
Patrick W. Dondl, Michael Scheutzow. Positive speed of propagation in a semilinear parabolic interface model with unbounded random coefficients. Networks and Heterogeneous Media, 2012, 7 (1) : 137-150. doi: 10.3934/nhm.2012.7.137 |
[3] |
Stephen Coombes, Helmut Schmidt, Carlo R. Laing, Nils Svanstedt, John A. Wyller. Waves in random neural media. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2951-2970. doi: 10.3934/dcds.2012.32.2951 |
[4] |
Joshua A. McGinnis, J. Douglas Wright. Using random walks to establish wavelike behavior in a linear FPUT system with random coefficients. Discrete and Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021100 |
[5] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
[6] |
Tzong-Yow Lee and Fred Torcaso. Wave propagation in a lattice KPP equation in random media. Electronic Research Announcements, 1997, 3: 121-125. |
[7] |
Patrick W. Dondl, Martin Jesenko. Threshold phenomenon for homogenized fronts in random elastic media. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 353-372. doi: 10.3934/dcdss.2020329 |
[8] |
Norbert Požár, Giang Thi Thu Vu. Long-time behavior of the one-phase Stefan problem in periodic and random media. Discrete and Continuous Dynamical Systems - S, 2018, 11 (5) : 991-1010. doi: 10.3934/dcdss.2018058 |
[9] |
Igor Chueshov, Björn Schmalfuss. Qualitative behavior of a class of stochastic parabolic PDEs with dynamical boundary conditions. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 315-338. doi: 10.3934/dcds.2007.18.315 |
[10] |
Janusz Mierczyński, Wenxian Shen. Time averaging for nonautonomous/random linear parabolic equations. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 661-699. doi: 10.3934/dcdsb.2008.9.661 |
[11] |
Guillaume Bal, Olivier Pinaud. Self-averaging of kinetic models for waves in random media. Kinetic and Related Models, 2008, 1 (1) : 85-100. doi: 10.3934/krm.2008.1.85 |
[12] |
Guillaume Bal. Homogenization in random media and effective medium theory for high frequency waves. Discrete and Continuous Dynamical Systems - B, 2007, 8 (2) : 473-492. doi: 10.3934/dcdsb.2007.8.473 |
[13] |
Govinda Anantha Padmanabha, Nicholas Zabaras. A Bayesian multiscale deep learning framework for flows in random media. Foundations of Data Science, 2021, 3 (2) : 251-303. doi: 10.3934/fods.2021016 |
[14] |
Renhai Wang, Yangrong Li. Backward compactness and periodicity of random attractors for stochastic wave equations with varying coefficients. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4145-4167. doi: 10.3934/dcdsb.2019054 |
[15] |
Galina Kurina, Vladimir Zadorozhniy. Mean periodic solutions of a inhomogeneous heat equation with random coefficients. Discrete and Continuous Dynamical Systems - S, 2020, 13 (5) : 1543-1551. doi: 10.3934/dcdss.2020087 |
[16] |
Martín Hernández, Rodrigo Lecaros, Sebastián Zamorano. Averaged turnpike property for differential equations with random constant coefficients. Mathematical Control and Related Fields, 2022 doi: 10.3934/mcrf.2022016 |
[17] |
Yuri Kozitsky, Krzysztof Pilorz. Random jumps and coalescence in the continuum: Evolution of states of an infinite particle system. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 725-752. doi: 10.3934/dcds.2020059 |
[18] |
Tomasz Komorowski, Stefano Olla, Marielle Simon. Macroscopic evolution of mechanical and thermal energy in a harmonic chain with random flip of velocities. Kinetic and Related Models, 2018, 11 (3) : 615-645. doi: 10.3934/krm.2018026 |
[19] |
Tomás Caraballo, María J. Garrido-Atienza, Björn Schmalfuss, José Valero. Attractors for a random evolution equation with infinite memory: Theoretical results. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1779-1800. doi: 10.3934/dcdsb.2017106 |
[20] |
Robert Hesse, Alexandra Neamţu. Global solutions and random dynamical systems for rough evolution equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2723-2748. doi: 10.3934/dcdsb.2020029 |
2020 Impact Factor: 1.213
Tools
Metrics
Other articles
by authors
[Back to Top]