Citation: |
[1] |
H. Attouch, "Variational Convergence for Functions and Operators," Pitmann, London, 1984. |
[2] |
A. Campbell and S. A. Nazarov, Une justification de la méthode de raccordement des développements asymptotiques appliquée a un probléme de plaque en flexion. Estimation de la matrice d'impedance, J. Math. Pures Appl., 76 (1997), 15-54.doi: 10.1016/S0021-7824(97)89944-8. |
[3] |
G. Cardone, T. Durante and S. A. Nazarov, The localization effect for eigenfunctions of the mixed boundary value problem in a thin cylinder with distorted ends, SIAM J. Math. Anal., 42 (2010), 2581-2609.doi: 10.1137/090755680. |
[4] |
C. Castro and E. Zuazua, Une remarque sur l'analyse asymptotique spectrale en homogénéisation, C. R. Acad. Sci. Paris Sér. I, 322 (1996), 1043-1047. |
[5] |
E. A. Coddington and N. Levinson, "Theory of Ordinary Differential Equations," McGraw-Hill, London, 1955. |
[6] |
L. Friedlander and M. Solomyak, On the spectrum of the Dirichlet Laplacian in a narrow strip, Israel J. Math., 170 (2009), 337-354.doi: 10.1007/s11856-009-0032-y. |
[7] |
V. Mazýa, S. Nazarov and B. Plamenevskij, "Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains," Birkhäuser, Basel, 2000. |
[8] |
Yu. D. Golovaty, D. Gómez, M. Lobo and E. Pérez, On vibrating membranes with very heavy thin inclusions, Math. Models Methods Appl. Sci., 14 (2004), 987-1034.doi: 10.1142/S0218202504003520. |
[9] |
D. Gómez, M. Lobo and E. Pérez, On the eigenfunctions associated with the high frequencies in systems with a concentrated mass, J. Math. Pures Appl., 78 (1999), 841-865.doi: 10.1016/S0021-7824(99)00009-4. |
[10] |
D. Gómez, M. Lobo, S. A. Nazarov and E. Pérez, Spectral stiff problems in domains surrounded by thin bands: asymptotic and uniform estimates for eigenvalues, J. Math. Pures Appl., 85 (2006), 598-632.doi: 10.1016/j.matpur.2005.10.013. |
[11] |
D. Gómez, M. Lobo, S. A. Nazarov and E. Pérez, Asymptotics for the spectrum of the Wentzell problem with a small parameter and other related stiff problems, J. Math. Pures Appl., 86 (2006), 369-402.doi: 10.1016/j.matpur.2006.08.003. |
[12] |
I. V. Kamotskii and S. A. Nazarov, On eigenfunctions localized in a neighborhood of the lateral surface of a thin domain, Probl. Mat. Analiz., 19 (1999), 105-148;doi: 10.1007/BF02672180. |
[13] |
M. Lobo, S. A. Nazarov and E. Pérez, Eigenoscillations of contrasting non-homogeneous elastic bodies. Asymptotic and uniform estimates for eigenvalues, IMA J. Appl. Math., 70 (2005), 419-458.doi: 10.1093/imamat/hxh039. |
[14] |
M. Lobo and E. Pérez, Local problems in vibrating systems with concentrated masses: A review, C. R. Mecanique, 331 (2003), 303-317.doi: 10.1016/S1631-0721(03)00058-5. |
[15] |
M. Lobo and E. Pérez, High frequency vibrations in a stiff problem, Math. Models Methods Appl. Sci., 7 (1997), 291-311.doi: 10.1142/S0218202597000177. |
[16] |
S. A. Nazarov and M. Specovius-Neugebauer, Approximation of exterior problems. Optimal conditions for the Laplacian, Analysis, 16 (1996), 305-324. |
[17] |
S. A. Nazarov, Localization effects for eigenfunctions near to the edge of a thin domain, Math. Bohem, 127 (2002), 283-292. |
[18] |
S. A. Nazarov, "Asymptotic Theory of Thin Plates and Rods. Vol.1. Dimension Reduction and Integral Estimates," Nauchnaya Kniga, Novosibirsk, 2002 (Russian). |
[19] |
S. A. Nazarov, Uniform estimates of remainders in asymptotic expansions of solutions to the problem on eigen-oscillations of a piezoelectric plate, Probl. Mat. Analiz., 25 (2003), 99-188;doi: 10.1023/A:1022364812273. |
[20] |
O. A. Oleinik, A. S. Shamaev and G. A. Yosifian, "Mathematical Problems in Elasticity and Homogenization," North-Holland, London, 1992. |
[21] |
E. Pérez, Long time approximations for solutions of wave equations via standing waves from quasimodes, J. Math. Pures Appl., 90 (2008), 387-411.doi: 10.1016/j.matpur.2008.06.003. |
[22] |
J. Sanchez-Hubert and E. Sanchez-Palencia, "Vibration and Coupling of Continuous Systems. Asymptotic Methods," Springer, Heidelberg, 1988. |