\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Spectral stiff problems in domains surrounded by thin stiff and heavy bands: Local effects for eigenfunctions

Abstract Related Papers Cited by
  • We consider the Neumann spectral problem for a second order differential operator, with piecewise constants coefficients, in a domain $\Omega_\varepsilon$ of $R^2$. Here $\Omega_\varepsilon$ is $\Omega \cup \omega_\varepsilon \cup \Gamma$, where $\Omega$ is a fixed bounded domain with boundary $\Gamma$, $\omega_\varepsilon$ is a curvilinear band of variable width $O(\varepsilon)$, and $\Gamma=\overline{\Omega}\cap \overline {\omega_\varepsilon}$. The density and stiffness constants are of order $O(\varepsilon^{-m-1})$ and $O(\varepsilon^{-1})$ respectively in this band, while they are of order $O(1)$ in $\Omega$; $m$ is a positive parameter and $\varepsilon \in (0,1)$, $\varepsilon\to 0$. Considering the range of the low, middle and high frequencies, we provide asymptotics for the eigenvalues and the corresponding eigenfunctions. For $m>2$, we highlight the middle frequencies for which the corresponding eigenfunctions may be localized asymptotically in small neighborhoods of certain points of the boundary.
    Mathematics Subject Classification: Primary: 35P05, 35P20; Secondary: 35B25, 73D30, 47A55, 47A75, 49R05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    H. Attouch, "Variational Convergence for Functions and Operators," Pitmann, London, 1984.

    [2]

    A. Campbell and S. A. Nazarov, Une justification de la méthode de raccordement des développements asymptotiques appliquée a un probléme de plaque en flexion. Estimation de la matrice d'impedance, J. Math. Pures Appl., 76 (1997), 15-54.doi: 10.1016/S0021-7824(97)89944-8.

    [3]

    G. Cardone, T. Durante and S. A. Nazarov, The localization effect for eigenfunctions of the mixed boundary value problem in a thin cylinder with distorted ends, SIAM J. Math. Anal., 42 (2010), 2581-2609.doi: 10.1137/090755680.

    [4]

    C. Castro and E. Zuazua, Une remarque sur l'analyse asymptotique spectrale en homogénéisation, C. R. Acad. Sci. Paris Sér. I, 322 (1996), 1043-1047.

    [5]

    E. A. Coddington and N. Levinson, "Theory of Ordinary Differential Equations," McGraw-Hill, London, 1955.

    [6]

    L. Friedlander and M. Solomyak, On the spectrum of the Dirichlet Laplacian in a narrow strip, Israel J. Math., 170 (2009), 337-354.doi: 10.1007/s11856-009-0032-y.

    [7]

    V. Mazýa, S. Nazarov and B. Plamenevskij, "Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains," Birkhäuser, Basel, 2000.

    [8]

    Yu. D. Golovaty, D. Gómez, M. Lobo and E. Pérez, On vibrating membranes with very heavy thin inclusions, Math. Models Methods Appl. Sci., 14 (2004), 987-1034.doi: 10.1142/S0218202504003520.

    [9]

    D. Gómez, M. Lobo and E. Pérez, On the eigenfunctions associated with the high frequencies in systems with a concentrated mass, J. Math. Pures Appl., 78 (1999), 841-865.doi: 10.1016/S0021-7824(99)00009-4.

    [10]

    D. Gómez, M. Lobo, S. A. Nazarov and E. Pérez, Spectral stiff problems in domains surrounded by thin bands: asymptotic and uniform estimates for eigenvalues, J. Math. Pures Appl., 85 (2006), 598-632.doi: 10.1016/j.matpur.2005.10.013.

    [11]

    D. Gómez, M. Lobo, S. A. Nazarov and E. Pérez, Asymptotics for the spectrum of the Wentzell problem with a small parameter and other related stiff problems, J. Math. Pures Appl., 86 (2006), 369-402.doi: 10.1016/j.matpur.2006.08.003.

    [12]

    I. V. Kamotskii and S. A. Nazarov, On eigenfunctions localized in a neighborhood of the lateral surface of a thin domain, Probl. Mat. Analiz., 19 (1999), 105-148;doi: 10.1007/BF02672180.

    [13]

    M. Lobo, S. A. Nazarov and E. Pérez, Eigenoscillations of contrasting non-homogeneous elastic bodies. Asymptotic and uniform estimates for eigenvalues, IMA J. Appl. Math., 70 (2005), 419-458.doi: 10.1093/imamat/hxh039.

    [14]

    M. Lobo and E. Pérez, Local problems in vibrating systems with concentrated masses: A review, C. R. Mecanique, 331 (2003), 303-317.doi: 10.1016/S1631-0721(03)00058-5.

    [15]

    M. Lobo and E. Pérez, High frequency vibrations in a stiff problem, Math. Models Methods Appl. Sci., 7 (1997), 291-311.doi: 10.1142/S0218202597000177.

    [16]

    S. A. Nazarov and M. Specovius-Neugebauer, Approximation of exterior problems. Optimal conditions for the Laplacian, Analysis, 16 (1996), 305-324.

    [17]

    S. A. Nazarov, Localization effects for eigenfunctions near to the edge of a thin domain, Math. Bohem, 127 (2002), 283-292.

    [18]

    S. A. Nazarov, "Asymptotic Theory of Thin Plates and Rods. Vol.1. Dimension Reduction and Integral Estimates," Nauchnaya Kniga, Novosibirsk, 2002 (Russian).

    [19]

    S. A. Nazarov, Uniform estimates of remainders in asymptotic expansions of solutions to the problem on eigen-oscillations of a piezoelectric plate, Probl. Mat. Analiz., 25 (2003), 99-188;doi: 10.1023/A:1022364812273.

    [20]

    O. A. Oleinik, A. S. Shamaev and G. A. Yosifian, "Mathematical Problems in Elasticity and Homogenization," North-Holland, London, 1992.

    [21]

    E. Pérez, Long time approximations for solutions of wave equations via standing waves from quasimodes, J. Math. Pures Appl., 90 (2008), 387-411.doi: 10.1016/j.matpur.2008.06.003.

    [22]

    J. Sanchez-Hubert and E. Sanchez-Palencia, "Vibration and Coupling of Continuous Systems. Asymptotic Methods," Springer, Heidelberg, 1988.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(60) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return