\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the location of the 1-particle branch of the spectrum of the disordered stochastic Ising model

Abstract Related Papers Cited by
  • We analyse the lower non trivial part of the spectrum of the generator of the Glauber dynamics for a $d$-dimensional nearest neighbour Ising model with a bounded random potential. We prove conjecture 1 in [1]: for sufficiently large values of the temperature, the first band of the spectrum of the generator of the process coincides with a closed non random segment of the real line.
    Mathematics Subject Classification: Primary: 82B44; Secondary: 60K35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    S. Albeverio, R. Minlos, E. Scacciatelli and E. Zhizhina, Spectral analysis of the disordered stochastic 1-D Ising model, Comm. Math. Phys., 204 (1999), 651-668.doi: i:10.1007/s002200050660.

    [2]

    F. Cesi, C. Maes and F. Martinelli, Relaxation in disordered magnets in the the Griffiths' regime, Comm. Math. Phys., 188 (1997), 135-173.doi: 10.1007/s002200050160.

    [3]

    M. Gianfelice and M. Isopi, Quantum methods for interacting particle systems. II. Glauber dynamics for Ising spin systems, Markov Processes and Relat. Fields, 4 (1998), 411-428.

    [4]

    M. Gianfelice and M. Isopi, Erratum and addenda to: "Quantum methods for interacting particle systems II, Glauber dynamics for Ising spin systems'', Markov Processes and Relat. Fields, 9 (2003), 513-516.

    [5]

    A. Guionnet and B. Zegarlinski, Decay to equilibrium in random spin systems on a lattice, Comm. Math. Phys., 181 (1996), 703-732.doi: 10.1007/BF02101294.

    [6]

    R. Holley, "On the Asymptotics of the Spin-Spin Autocorrelation Function In Stochastic Ising Models Near the Critical Temperature," Progress in Probability n. 19, Spatial Stochastic Processes Birkäuser Boston, 1991.

    [7]

    T. Kato, "Perturbation Theory for Linear Operators," Springer-Verlag, 1966.

    [8]

    T. Liggett, "Interacting Particle Systems," Springer-Verlag, 1985.

    [9]

    R. A. Minlos, Invariant subspaces of the stochastic ising high temperature dynamics, Markov Processes Relat. Fields, 2 (1996), 263-284.

    [10]

    C. J. Preston, "Gibbs States on Countable Sets," Cambridge Tracts in Mathematics, No. 68. Cambridge University Press, London-New York, 1974.

    [11]

    L. Pastur and A. Figotin, "Spectra of Random and Almost Periodic Operators," Springer-Verlag, 1992.

    [12]

    H. Spohn and E. Zhizhina, Long-time behavior for the 1-D stochastic Ising model with unbounded random couplings, J. Statist. Phys., 111 (2003), 419-431.doi: 10.1023/A:1022225612366.

    [13]

    B. Zegarlinski, Strong decay to equilibrium in one dimensional random spin systems, J. Stat. Phys., 77 (1994), 717-732.doi: 10.1007/BF02179458.

    [14]

    E. Zhizhina, The Lifshitz tail and relaxation to equilibrium in the one-dimensional disordered Ising model, J. Statist. Phys., 98 (2000), 701-721.doi: 10.1023/A:1018623424891.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(84) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return