- Previous Article
- NHM Home
- This Issue
-
Next Article
On the location of the 1-particle branch of the spectrum of the disordered stochastic Ising model
A rate-independent model for permanent inelastic effects in shape memory materials
1. | Dipartimento di Matematica, Università di Trento, Via Sommarive 14, 38100 Povo (Trento), Italy |
2. | Fakultät für Mathematik, Technische Universität Dortmund, Vogelpothsweg 87, 44227 Dortmund, Germany |
3. | Istituto di Matematica Applicata e Tecnologie Informatiche – CNR, Via Ferrata 1, 27100 Pavia |
References:
[1] |
J. Math. Soc. Japan, 57 (2005), 903-933.
doi: 10.2969/jmsj/1158241940. |
[2] |
in the IMA Volumes in Mathematics and its Applications, 3, Springer-Verlag, New York, 1987. |
[3] |
Contin. Mech. Thermodyn., 15 (2003), 463-485.
doi: 10.1007/s00161-003-0127-3. |
[4] |
Journal de Physique IV, 11 (2001), 577-582. Google Scholar |
[5] |
Math. Models Meth. Appl. Sci., 18 (2008), 125-164.
doi: 10.1142/S0218202508002632. |
[6] |
Internat. J. Numer. Meth. Engrg., 55 (2002), 1255-1284.
doi: 10.1002/nme.619. |
[7] |
Internat. J. Numer. Meth. Engrg., 61 (2004), 807-836.
doi: 10.1002/nme.1086. |
[8] |
Int. J. Plasticity, 23 (2007), 207-226.
doi: 10.1016/j.ijplas.2006.02.012. |
[9] |
Comput. Methods Appl. Mech. Engrg., 198 (2009), 1631-1637.
doi: 10.1016/j.cma.2009.01.019. |
[10] |
Int. J. Non-Linear Mech., 32 (1997), 1101-1114.
doi: 10.1016/S0020-7462(96)00130-8. |
[11] |
Comput. Mech. Appl. Mech. Engrg., 146 (1997), 281-312.
doi: 10.1016/S0045-7825(96)01232-7. |
[12] |
Math. Models Meth. Appl. Sci. (2010) to appear. Google Scholar |
[13] |
Int. J. Eng. Sci., 37 (1999), 1175-1203.
doi: 10.1016/S0020-7225(98)00115-3. |
[14] |
vol. 121 of Applied Mathematical Sciences, Springer-Verlag, New York, 1996. |
[15] |
Math. Methods Appl. Sci., 29 (2006), 209-233.
doi: 10.1002/mma.672. |
[16] |
Nonlinear Anal., 24 (1995), 1565-1579.
doi: 10.1016/0362-546X(94)00097-2. |
[17] |
Nonlinear Anal., 18 (1992), 873-888.
doi: 10.1016/0362-546X(92)90228-7. |
[18] |
Birkhäuser-Boston, 1993. |
[19] |
Springer-Berlin, 1976. |
[20] |
J. Phys. C4 Suppl., 12 (1982), 3-15. Google Scholar |
[21] |
J. Phys. Condens. Matter, 2 (1990), 61-77.
doi: 10.1088/0953-8984/2/1/005. |
[22] |
C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre, 304 (1987), 239-244. Google Scholar |
[23] |
Springer-Verlag, 2002. |
[24] |
Springer-Verlag, 1996. Google Scholar |
[25] |
Phys. D, 72 (1994), 287-308.
doi: 10.1016/0167-2789(94)90234-8. |
[26] |
Comput. Methods Appl. Mech. Engrg., 191 (2001), 215-238.
doi: 10.1016/S0045-7825(01)00271-7. |
[27] |
J. Intell. Mater. Syst. Struct., 8 (1997), 815-823.
doi: 10.1177/1045389X9700801001. |
[28] |
Internat. J. Solids Structures, 40 (2003), 827-849.
doi: 10.1016/S0020-7683(02)00621-2. |
[29] |
Nonlinear Anal., 15 (1990), 977-990.
doi: 10.1016/0362-546X(90)90079-V. |
[30] |
in Lecture Notes in Math., Vol. 1584, eds. M. Brokate et al (Springer 1994), 87-146. |
[31] |
Math. Mech. Solids (2010), to appear. Google Scholar |
[32] |
M2AN Math. Model. Anal. Numer., (2010), to appear. Google Scholar |
[33] |
Meccanica, 40 (2005), 389-418.
doi: 10.1007/s11012-005-2106-1. |
[34] |
IMA J. Appl. Math., (2010), to appear. Google Scholar |
[35] |
Mech. Mater., 38 (2006), 391-429.
doi: 10.1016/j.mechmat.2005.08.003. |
[36] |
Mech. Mater., 36 (2004), 865-892. Google Scholar |
[37] |
Calc. Var. Partial Differential Equations, 22 (2005), 73-99. |
[38] |
Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 1992. |
[39] |
In C. Dafermos and E. Feireisl, editors, Handbook of Differential Equations, Elsevier, (2005), 461-559. |
[40] |
SIAM J. Math. Anal., 41 (2009), 1388-1414.
doi: 10.1137/080726215. |
[41] |
SIAM J. Numer. Anal., 48 (2010), 1625-1646.
doi: 10.1137/090750238. |
[42] |
Proc. of the IUTAM Symposium on Variational Concepts with Applications to the Mechanics of Materials (Bochum 2008), IUTAM Bookseries, Springer, 2009. Google Scholar |
[43] |
Adv. Math. Sci. Appl., 17 (2007), 160-182. |
[44] |
Multiscale Model. Simul., 1 (2003), 571-597.
doi: 10.1137/S1540345903422860. |
[45] |
Calc. Var. Partial Differential Equations, 31 (2008), 387-416.
doi: 10.1007/s00526-007-0119-4. |
[46] |
Proc. of the Workshop on Models of Continuum Mechanics in Analysis and Engineering, eds. H.-D Alber, R. Balean and R. Farwig (Shaker-Verlag, 1999), 117-129. Google Scholar |
[47] |
Arch. Rational Mech. Anal., 162 (2002), 137-177.
doi: 10.1007/s002050200194. |
[48] |
J. Phys. IV, C2-5 (1995), 423-431. Google Scholar |
[49] |
Internat. J. of Solid. Struct., 42 (2005), 3439-3457.
doi: 10.1016/j.ijsolstr.2004.11.006. |
[50] |
Control Cybernet., 29 (2000), 341-365. |
[51] |
Materials Sci. Engrg. A, 438-440 (2006), 454-458.
doi: 10.1016/j.msea.2006.01.104. |
[52] |
Int. J. Plasticity, 23 (2007), 1679-1720.
doi: 10.1016/j.ijplas.2007.03.011. |
[53] |
European J. Mech. A Solids, 13 (1994), 21-50. Google Scholar |
[54] |
Int. J. Plasticity, 28 (2008), 455-482.
doi: 10.1016/j.ijplas.2007.05.005. |
[55] |
Interfaces Free Bound., 4 (2002), 111-136.
doi: 10.4171/IFB/55. |
[56] |
in Nonlinear Homogenization and its Appl. to Composites, Polycrystals and Smart Materials, eds. P. Ponte Castaneda, J. J. Telega and B. Gambin, NATO Sci. Series II/170 (Kluwer, 2004), 269-304. |
[57] |
Eur. J. Mech. A/Solids, 17 (1998), 789-806.
doi: 10.1016/S0997-7538(98)80005-3. |
[58] |
J. Mech. Phys. Solids, 49 (2001), 709-737.
doi: 10.1016/S0022-5096(00)00061-2. |
[59] |
Comput. Materials Sci., 41 (2007), 208-221.
doi: 10.1016/j.commatsci.2007.04.006. |
[60] |
Progress in Nonlinear Differential Equations and their Applications, 28. Birkhäuser Boston, MA, 1996. |
[61] |
SIAM J. Math. Anal., 38 (2007), 1733-1759.
doi: 10.1137/060653159. |
show all references
References:
[1] |
J. Math. Soc. Japan, 57 (2005), 903-933.
doi: 10.2969/jmsj/1158241940. |
[2] |
in the IMA Volumes in Mathematics and its Applications, 3, Springer-Verlag, New York, 1987. |
[3] |
Contin. Mech. Thermodyn., 15 (2003), 463-485.
doi: 10.1007/s00161-003-0127-3. |
[4] |
Journal de Physique IV, 11 (2001), 577-582. Google Scholar |
[5] |
Math. Models Meth. Appl. Sci., 18 (2008), 125-164.
doi: 10.1142/S0218202508002632. |
[6] |
Internat. J. Numer. Meth. Engrg., 55 (2002), 1255-1284.
doi: 10.1002/nme.619. |
[7] |
Internat. J. Numer. Meth. Engrg., 61 (2004), 807-836.
doi: 10.1002/nme.1086. |
[8] |
Int. J. Plasticity, 23 (2007), 207-226.
doi: 10.1016/j.ijplas.2006.02.012. |
[9] |
Comput. Methods Appl. Mech. Engrg., 198 (2009), 1631-1637.
doi: 10.1016/j.cma.2009.01.019. |
[10] |
Int. J. Non-Linear Mech., 32 (1997), 1101-1114.
doi: 10.1016/S0020-7462(96)00130-8. |
[11] |
Comput. Mech. Appl. Mech. Engrg., 146 (1997), 281-312.
doi: 10.1016/S0045-7825(96)01232-7. |
[12] |
Math. Models Meth. Appl. Sci. (2010) to appear. Google Scholar |
[13] |
Int. J. Eng. Sci., 37 (1999), 1175-1203.
doi: 10.1016/S0020-7225(98)00115-3. |
[14] |
vol. 121 of Applied Mathematical Sciences, Springer-Verlag, New York, 1996. |
[15] |
Math. Methods Appl. Sci., 29 (2006), 209-233.
doi: 10.1002/mma.672. |
[16] |
Nonlinear Anal., 24 (1995), 1565-1579.
doi: 10.1016/0362-546X(94)00097-2. |
[17] |
Nonlinear Anal., 18 (1992), 873-888.
doi: 10.1016/0362-546X(92)90228-7. |
[18] |
Birkhäuser-Boston, 1993. |
[19] |
Springer-Berlin, 1976. |
[20] |
J. Phys. C4 Suppl., 12 (1982), 3-15. Google Scholar |
[21] |
J. Phys. Condens. Matter, 2 (1990), 61-77.
doi: 10.1088/0953-8984/2/1/005. |
[22] |
C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre, 304 (1987), 239-244. Google Scholar |
[23] |
Springer-Verlag, 2002. |
[24] |
Springer-Verlag, 1996. Google Scholar |
[25] |
Phys. D, 72 (1994), 287-308.
doi: 10.1016/0167-2789(94)90234-8. |
[26] |
Comput. Methods Appl. Mech. Engrg., 191 (2001), 215-238.
doi: 10.1016/S0045-7825(01)00271-7. |
[27] |
J. Intell. Mater. Syst. Struct., 8 (1997), 815-823.
doi: 10.1177/1045389X9700801001. |
[28] |
Internat. J. Solids Structures, 40 (2003), 827-849.
doi: 10.1016/S0020-7683(02)00621-2. |
[29] |
Nonlinear Anal., 15 (1990), 977-990.
doi: 10.1016/0362-546X(90)90079-V. |
[30] |
in Lecture Notes in Math., Vol. 1584, eds. M. Brokate et al (Springer 1994), 87-146. |
[31] |
Math. Mech. Solids (2010), to appear. Google Scholar |
[32] |
M2AN Math. Model. Anal. Numer., (2010), to appear. Google Scholar |
[33] |
Meccanica, 40 (2005), 389-418.
doi: 10.1007/s11012-005-2106-1. |
[34] |
IMA J. Appl. Math., (2010), to appear. Google Scholar |
[35] |
Mech. Mater., 38 (2006), 391-429.
doi: 10.1016/j.mechmat.2005.08.003. |
[36] |
Mech. Mater., 36 (2004), 865-892. Google Scholar |
[37] |
Calc. Var. Partial Differential Equations, 22 (2005), 73-99. |
[38] |
Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 1992. |
[39] |
In C. Dafermos and E. Feireisl, editors, Handbook of Differential Equations, Elsevier, (2005), 461-559. |
[40] |
SIAM J. Math. Anal., 41 (2009), 1388-1414.
doi: 10.1137/080726215. |
[41] |
SIAM J. Numer. Anal., 48 (2010), 1625-1646.
doi: 10.1137/090750238. |
[42] |
Proc. of the IUTAM Symposium on Variational Concepts with Applications to the Mechanics of Materials (Bochum 2008), IUTAM Bookseries, Springer, 2009. Google Scholar |
[43] |
Adv. Math. Sci. Appl., 17 (2007), 160-182. |
[44] |
Multiscale Model. Simul., 1 (2003), 571-597.
doi: 10.1137/S1540345903422860. |
[45] |
Calc. Var. Partial Differential Equations, 31 (2008), 387-416.
doi: 10.1007/s00526-007-0119-4. |
[46] |
Proc. of the Workshop on Models of Continuum Mechanics in Analysis and Engineering, eds. H.-D Alber, R. Balean and R. Farwig (Shaker-Verlag, 1999), 117-129. Google Scholar |
[47] |
Arch. Rational Mech. Anal., 162 (2002), 137-177.
doi: 10.1007/s002050200194. |
[48] |
J. Phys. IV, C2-5 (1995), 423-431. Google Scholar |
[49] |
Internat. J. of Solid. Struct., 42 (2005), 3439-3457.
doi: 10.1016/j.ijsolstr.2004.11.006. |
[50] |
Control Cybernet., 29 (2000), 341-365. |
[51] |
Materials Sci. Engrg. A, 438-440 (2006), 454-458.
doi: 10.1016/j.msea.2006.01.104. |
[52] |
Int. J. Plasticity, 23 (2007), 1679-1720.
doi: 10.1016/j.ijplas.2007.03.011. |
[53] |
European J. Mech. A Solids, 13 (1994), 21-50. Google Scholar |
[54] |
Int. J. Plasticity, 28 (2008), 455-482.
doi: 10.1016/j.ijplas.2007.05.005. |
[55] |
Interfaces Free Bound., 4 (2002), 111-136.
doi: 10.4171/IFB/55. |
[56] |
in Nonlinear Homogenization and its Appl. to Composites, Polycrystals and Smart Materials, eds. P. Ponte Castaneda, J. J. Telega and B. Gambin, NATO Sci. Series II/170 (Kluwer, 2004), 269-304. |
[57] |
Eur. J. Mech. A/Solids, 17 (1998), 789-806.
doi: 10.1016/S0997-7538(98)80005-3. |
[58] |
J. Mech. Phys. Solids, 49 (2001), 709-737.
doi: 10.1016/S0022-5096(00)00061-2. |
[59] |
Comput. Materials Sci., 41 (2007), 208-221.
doi: 10.1016/j.commatsci.2007.04.006. |
[60] |
Progress in Nonlinear Differential Equations and their Applications, 28. Birkhäuser Boston, MA, 1996. |
[61] |
SIAM J. Math. Anal., 38 (2007), 1733-1759.
doi: 10.1137/060653159. |
[1] |
Michela Eleuteri, Luca Lussardi. Thermal control of a rate-independent model for permanent inelastic effects in shape memory materials. Evolution Equations & Control Theory, 2014, 3 (3) : 411-427. doi: 10.3934/eect.2014.3.411 |
[2] |
S. Gatti, Elena Sartori. Well-posedness results for phase field systems with memory effects in the order parameter dynamics. Discrete & Continuous Dynamical Systems, 2003, 9 (3) : 705-726. doi: 10.3934/dcds.2003.9.705 |
[3] |
Tayeb Hadj Kaddour, Michael Reissig. Global well-posedness for effectively damped wave models with nonlinear memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021057 |
[4] |
Jan Prüss, Vicente Vergara, Rico Zacher. Well-posedness and long-time behaviour for the non-isothermal Cahn-Hilliard equation with memory. Discrete & Continuous Dynamical Systems, 2010, 26 (2) : 625-647. doi: 10.3934/dcds.2010.26.625 |
[5] |
Huafei Di, Yadong Shang, Xiaoxiao Zheng. Global well-posedness for a fourth order pseudo-parabolic equation with memory and source terms. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 781-801. doi: 10.3934/dcdsb.2016.21.781 |
[6] |
Aissa Guesmia, Nasser-eddine Tatar. Some well-posedness and stability results for abstract hyperbolic equations with infinite memory and distributed time delay. Communications on Pure & Applied Analysis, 2015, 14 (2) : 457-491. doi: 10.3934/cpaa.2015.14.457 |
[7] |
Markus Grasmair. Well-posedness and convergence rates for sparse regularization with sublinear $l^q$ penalty term. Inverse Problems & Imaging, 2009, 3 (3) : 383-387. doi: 10.3934/ipi.2009.3.383 |
[8] |
Mario Bukal. Well-posedness and convergence of a numerical scheme for the corrected Derrida-Lebowitz-Speer-Spohn equation using the Hellinger distance. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3389-3414. doi: 10.3934/dcds.2021001 |
[9] |
Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. I. Well-posedness and convergence of the method of lines. Inverse Problems & Imaging, 2013, 7 (2) : 307-340. doi: 10.3934/ipi.2013.7.307 |
[10] |
Vanessa Barros, Felipe Linares. A remark on the well-posedness of a degenerated Zakharov system. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1259-1274. doi: 10.3934/cpaa.2015.14.1259 |
[11] |
Boris Kolev. Local well-posedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167-189. doi: 10.3934/jgm.2017007 |
[12] |
Lin Shen, Shu Wang, Yongxin Wang. The well-posedness and regularity of a rotating blades equation. Electronic Research Archive, 2020, 28 (2) : 691-719. doi: 10.3934/era.2020036 |
[13] |
Elissar Nasreddine. Well-posedness for a model of individual clustering. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2647-2668. doi: 10.3934/dcdsb.2013.18.2647 |
[14] |
Jerry Bona, Nikolay Tzvetkov. Sharp well-posedness results for the BBM equation. Discrete & Continuous Dynamical Systems, 2009, 23 (4) : 1241-1252. doi: 10.3934/dcds.2009.23.1241 |
[15] |
Thomas Y. Hou, Congming Li. Global well-posedness of the viscous Boussinesq equations. Discrete & Continuous Dynamical Systems, 2005, 12 (1) : 1-12. doi: 10.3934/dcds.2005.12.1 |
[16] |
David M. Ambrose, Jerry L. Bona, David P. Nicholls. Well-posedness of a model for water waves with viscosity. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1113-1137. doi: 10.3934/dcdsb.2012.17.1113 |
[17] |
A. Alexandrou Himonas, Curtis Holliman. On well-posedness of the Degasperis-Procesi equation. Discrete & Continuous Dynamical Systems, 2011, 31 (2) : 469-488. doi: 10.3934/dcds.2011.31.469 |
[18] |
Mircea Sofonea, Yi-bin Xiao. Tykhonov well-posedness of a viscoplastic contact problem†. Evolution Equations & Control Theory, 2020, 9 (4) : 1167-1185. doi: 10.3934/eect.2020048 |
[19] |
Nils Strunk. Well-posedness for the supercritical gKdV equation. Communications on Pure & Applied Analysis, 2014, 13 (2) : 527-542. doi: 10.3934/cpaa.2014.13.527 |
[20] |
Massimo Cicognani, Michael Reissig. Well-posedness for degenerate Schrödinger equations. Evolution Equations & Control Theory, 2014, 3 (1) : 15-33. doi: 10.3934/eect.2014.3.15 |
2019 Impact Factor: 1.053
Tools
Metrics
Other articles
by authors
[Back to Top]