March  2011, 6(1): 145-165. doi: 10.3934/nhm.2011.6.145

A rate-independent model for permanent inelastic effects in shape memory materials

1. 

Dipartimento di Matematica, Università di Trento, Via Sommarive 14, 38100 Povo (Trento), Italy

2. 

Fakultät für Mathematik, Technische Universität Dortmund, Vogelpothsweg 87, 44227 Dortmund, Germany

3. 

Istituto di Matematica Applicata e Tecnologie Informatiche – CNR, Via Ferrata 1, 27100 Pavia

Received  May 2010 Revised  October 2010 Published  March 2011

This paper addresses a three-dimensional model for isothermal stress-induced transformation in shape memory polycrystalline materials in presence of permanent inelastic effects. The basic features of the model are recalled and the constitutive and the three-dimensional quasi-static evolution problem are proved to be well-posed. Finally, we discuss the convergence of the model to reduced/former ones by means of a rigorous $\Gamma$-convergence analysis.
Citation: Michela Eleuteri, Luca Lussardi, Ulisse Stefanelli. A rate-independent model for permanent inelastic effects in shape memory materials. Networks & Heterogeneous Media, 2011, 6 (1) : 145-165. doi: 10.3934/nhm.2011.6.145
References:
[1]

J. Math. Soc. Japan, 57 (2005), 903-933. doi: 10.2969/jmsj/1158241940.  Google Scholar

[2]

in the IMA Volumes in Mathematics and its Applications, 3, Springer-Verlag, New York, 1987.  Google Scholar

[3]

Contin. Mech. Thermodyn., 15 (2003), 463-485. doi: 10.1007/s00161-003-0127-3.  Google Scholar

[4]

Journal de Physique IV, 11 (2001), 577-582. Google Scholar

[5]

Math. Models Meth. Appl. Sci., 18 (2008), 125-164. doi: 10.1142/S0218202508002632.  Google Scholar

[6]

Internat. J. Numer. Meth. Engrg., 55 (2002), 1255-1284. doi: 10.1002/nme.619.  Google Scholar

[7]

Internat. J. Numer. Meth. Engrg., 61 (2004), 807-836. doi: 10.1002/nme.1086.  Google Scholar

[8]

Int. J. Plasticity, 23 (2007), 207-226. doi: 10.1016/j.ijplas.2006.02.012.  Google Scholar

[9]

Comput. Methods Appl. Mech. Engrg., 198 (2009), 1631-1637. doi: 10.1016/j.cma.2009.01.019.  Google Scholar

[10]

Int. J. Non-Linear Mech., 32 (1997), 1101-1114. doi: 10.1016/S0020-7462(96)00130-8.  Google Scholar

[11]

Comput. Mech. Appl. Mech. Engrg., 146 (1997), 281-312. doi: 10.1016/S0045-7825(96)01232-7.  Google Scholar

[12]

Math. Models Meth. Appl. Sci. (2010) to appear. Google Scholar

[13]

Int. J. Eng. Sci., 37 (1999), 1175-1203. doi: 10.1016/S0020-7225(98)00115-3.  Google Scholar

[14]

vol. 121 of Applied Mathematical Sciences, Springer-Verlag, New York, 1996.  Google Scholar

[15]

Math. Methods Appl. Sci., 29 (2006), 209-233. doi: 10.1002/mma.672.  Google Scholar

[16]

Nonlinear Anal., 24 (1995), 1565-1579. doi: 10.1016/0362-546X(94)00097-2.  Google Scholar

[17]

Nonlinear Anal., 18 (1992), 873-888. doi: 10.1016/0362-546X(92)90228-7.  Google Scholar

[18]

Birkhäuser-Boston, 1993.  Google Scholar

[19]

Springer-Berlin, 1976.  Google Scholar

[20]

J. Phys. C4 Suppl., 12 (1982), 3-15. Google Scholar

[21]

J. Phys. Condens. Matter, 2 (1990), 61-77. doi: 10.1088/0953-8984/2/1/005.  Google Scholar

[22]

C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre, 304 (1987), 239-244. Google Scholar

[23]

Springer-Verlag, 2002.  Google Scholar

[24]

Springer-Verlag, 1996. Google Scholar

[25]

Phys. D, 72 (1994), 287-308. doi: 10.1016/0167-2789(94)90234-8.  Google Scholar

[26]

Comput. Methods Appl. Mech. Engrg., 191 (2001), 215-238. doi: 10.1016/S0045-7825(01)00271-7.  Google Scholar

[27]

J. Intell. Mater. Syst. Struct., 8 (1997), 815-823. doi: 10.1177/1045389X9700801001.  Google Scholar

[28]

Internat. J. Solids Structures, 40 (2003), 827-849. doi: 10.1016/S0020-7683(02)00621-2.  Google Scholar

[29]

Nonlinear Anal., 15 (1990), 977-990. doi: 10.1016/0362-546X(90)90079-V.  Google Scholar

[30]

in Lecture Notes in Math., Vol. 1584, eds. M. Brokate et al (Springer 1994), 87-146.  Google Scholar

[31]

Math. Mech. Solids (2010), to appear. Google Scholar

[32]

M2AN Math. Model. Anal. Numer., (2010), to appear. Google Scholar

[33]

Meccanica, 40 (2005), 389-418. doi: 10.1007/s11012-005-2106-1.  Google Scholar

[34]

IMA J. Appl. Math., (2010), to appear. Google Scholar

[35]

Mech. Mater., 38 (2006), 391-429. doi: 10.1016/j.mechmat.2005.08.003.  Google Scholar

[36]

Mech. Mater., 36 (2004), 865-892. Google Scholar

[37]

Calc. Var. Partial Differential Equations, 22 (2005), 73-99.  Google Scholar

[38]

Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 1992.  Google Scholar

[39]

In C. Dafermos and E. Feireisl, editors, Handbook of Differential Equations, Elsevier, (2005), 461-559.  Google Scholar

[40]

SIAM J. Math. Anal., 41 (2009), 1388-1414. doi: 10.1137/080726215.  Google Scholar

[41]

SIAM J. Numer. Anal., 48 (2010), 1625-1646. doi: 10.1137/090750238.  Google Scholar

[42]

Proc. of the IUTAM Symposium on Variational Concepts with Applications to the Mechanics of Materials (Bochum 2008), IUTAM Bookseries, Springer, 2009. Google Scholar

[43]

Adv. Math. Sci. Appl., 17 (2007), 160-182.  Google Scholar

[44]

Multiscale Model. Simul., 1 (2003), 571-597. doi: 10.1137/S1540345903422860.  Google Scholar

[45]

Calc. Var. Partial Differential Equations, 31 (2008), 387-416. doi: 10.1007/s00526-007-0119-4.  Google Scholar

[46]

Proc. of the Workshop on Models of Continuum Mechanics in Analysis and Engineering, eds. H.-D Alber, R. Balean and R. Farwig (Shaker-Verlag, 1999), 117-129. Google Scholar

[47]

Arch. Rational Mech. Anal., 162 (2002), 137-177. doi: 10.1007/s002050200194.  Google Scholar

[48]

J. Phys. IV, C2-5 (1995), 423-431. Google Scholar

[49]

Internat. J. of Solid. Struct., 42 (2005), 3439-3457. doi: 10.1016/j.ijsolstr.2004.11.006.  Google Scholar

[50]

Control Cybernet., 29 (2000), 341-365.  Google Scholar

[51]

Materials Sci. Engrg. A, 438-440 (2006), 454-458. doi: 10.1016/j.msea.2006.01.104.  Google Scholar

[52]

Int. J. Plasticity, 23 (2007), 1679-1720. doi: 10.1016/j.ijplas.2007.03.011.  Google Scholar

[53]

European J. Mech. A Solids, 13 (1994), 21-50. Google Scholar

[54]

Int. J. Plasticity, 28 (2008), 455-482. doi: 10.1016/j.ijplas.2007.05.005.  Google Scholar

[55]

Interfaces Free Bound., 4 (2002), 111-136. doi: 10.4171/IFB/55.  Google Scholar

[56]

in Nonlinear Homogenization and its Appl. to Composites, Polycrystals and Smart Materials, eds. P. Ponte Castaneda, J. J. Telega and B. Gambin, NATO Sci. Series II/170 (Kluwer, 2004), 269-304.  Google Scholar

[57]

Eur. J. Mech. A/Solids, 17 (1998), 789-806. doi: 10.1016/S0997-7538(98)80005-3.  Google Scholar

[58]

J. Mech. Phys. Solids, 49 (2001), 709-737. doi: 10.1016/S0022-5096(00)00061-2.  Google Scholar

[59]

Comput. Materials Sci., 41 (2007), 208-221. doi: 10.1016/j.commatsci.2007.04.006.  Google Scholar

[60]

Progress in Nonlinear Differential Equations and their Applications, 28. Birkhäuser Boston, MA, 1996.  Google Scholar

[61]

SIAM J. Math. Anal., 38 (2007), 1733-1759. doi: 10.1137/060653159.  Google Scholar

show all references

References:
[1]

J. Math. Soc. Japan, 57 (2005), 903-933. doi: 10.2969/jmsj/1158241940.  Google Scholar

[2]

in the IMA Volumes in Mathematics and its Applications, 3, Springer-Verlag, New York, 1987.  Google Scholar

[3]

Contin. Mech. Thermodyn., 15 (2003), 463-485. doi: 10.1007/s00161-003-0127-3.  Google Scholar

[4]

Journal de Physique IV, 11 (2001), 577-582. Google Scholar

[5]

Math. Models Meth. Appl. Sci., 18 (2008), 125-164. doi: 10.1142/S0218202508002632.  Google Scholar

[6]

Internat. J. Numer. Meth. Engrg., 55 (2002), 1255-1284. doi: 10.1002/nme.619.  Google Scholar

[7]

Internat. J. Numer. Meth. Engrg., 61 (2004), 807-836. doi: 10.1002/nme.1086.  Google Scholar

[8]

Int. J. Plasticity, 23 (2007), 207-226. doi: 10.1016/j.ijplas.2006.02.012.  Google Scholar

[9]

Comput. Methods Appl. Mech. Engrg., 198 (2009), 1631-1637. doi: 10.1016/j.cma.2009.01.019.  Google Scholar

[10]

Int. J. Non-Linear Mech., 32 (1997), 1101-1114. doi: 10.1016/S0020-7462(96)00130-8.  Google Scholar

[11]

Comput. Mech. Appl. Mech. Engrg., 146 (1997), 281-312. doi: 10.1016/S0045-7825(96)01232-7.  Google Scholar

[12]

Math. Models Meth. Appl. Sci. (2010) to appear. Google Scholar

[13]

Int. J. Eng. Sci., 37 (1999), 1175-1203. doi: 10.1016/S0020-7225(98)00115-3.  Google Scholar

[14]

vol. 121 of Applied Mathematical Sciences, Springer-Verlag, New York, 1996.  Google Scholar

[15]

Math. Methods Appl. Sci., 29 (2006), 209-233. doi: 10.1002/mma.672.  Google Scholar

[16]

Nonlinear Anal., 24 (1995), 1565-1579. doi: 10.1016/0362-546X(94)00097-2.  Google Scholar

[17]

Nonlinear Anal., 18 (1992), 873-888. doi: 10.1016/0362-546X(92)90228-7.  Google Scholar

[18]

Birkhäuser-Boston, 1993.  Google Scholar

[19]

Springer-Berlin, 1976.  Google Scholar

[20]

J. Phys. C4 Suppl., 12 (1982), 3-15. Google Scholar

[21]

J. Phys. Condens. Matter, 2 (1990), 61-77. doi: 10.1088/0953-8984/2/1/005.  Google Scholar

[22]

C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre, 304 (1987), 239-244. Google Scholar

[23]

Springer-Verlag, 2002.  Google Scholar

[24]

Springer-Verlag, 1996. Google Scholar

[25]

Phys. D, 72 (1994), 287-308. doi: 10.1016/0167-2789(94)90234-8.  Google Scholar

[26]

Comput. Methods Appl. Mech. Engrg., 191 (2001), 215-238. doi: 10.1016/S0045-7825(01)00271-7.  Google Scholar

[27]

J. Intell. Mater. Syst. Struct., 8 (1997), 815-823. doi: 10.1177/1045389X9700801001.  Google Scholar

[28]

Internat. J. Solids Structures, 40 (2003), 827-849. doi: 10.1016/S0020-7683(02)00621-2.  Google Scholar

[29]

Nonlinear Anal., 15 (1990), 977-990. doi: 10.1016/0362-546X(90)90079-V.  Google Scholar

[30]

in Lecture Notes in Math., Vol. 1584, eds. M. Brokate et al (Springer 1994), 87-146.  Google Scholar

[31]

Math. Mech. Solids (2010), to appear. Google Scholar

[32]

M2AN Math. Model. Anal. Numer., (2010), to appear. Google Scholar

[33]

Meccanica, 40 (2005), 389-418. doi: 10.1007/s11012-005-2106-1.  Google Scholar

[34]

IMA J. Appl. Math., (2010), to appear. Google Scholar

[35]

Mech. Mater., 38 (2006), 391-429. doi: 10.1016/j.mechmat.2005.08.003.  Google Scholar

[36]

Mech. Mater., 36 (2004), 865-892. Google Scholar

[37]

Calc. Var. Partial Differential Equations, 22 (2005), 73-99.  Google Scholar

[38]

Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 1992.  Google Scholar

[39]

In C. Dafermos and E. Feireisl, editors, Handbook of Differential Equations, Elsevier, (2005), 461-559.  Google Scholar

[40]

SIAM J. Math. Anal., 41 (2009), 1388-1414. doi: 10.1137/080726215.  Google Scholar

[41]

SIAM J. Numer. Anal., 48 (2010), 1625-1646. doi: 10.1137/090750238.  Google Scholar

[42]

Proc. of the IUTAM Symposium on Variational Concepts with Applications to the Mechanics of Materials (Bochum 2008), IUTAM Bookseries, Springer, 2009. Google Scholar

[43]

Adv. Math. Sci. Appl., 17 (2007), 160-182.  Google Scholar

[44]

Multiscale Model. Simul., 1 (2003), 571-597. doi: 10.1137/S1540345903422860.  Google Scholar

[45]

Calc. Var. Partial Differential Equations, 31 (2008), 387-416. doi: 10.1007/s00526-007-0119-4.  Google Scholar

[46]

Proc. of the Workshop on Models of Continuum Mechanics in Analysis and Engineering, eds. H.-D Alber, R. Balean and R. Farwig (Shaker-Verlag, 1999), 117-129. Google Scholar

[47]

Arch. Rational Mech. Anal., 162 (2002), 137-177. doi: 10.1007/s002050200194.  Google Scholar

[48]

J. Phys. IV, C2-5 (1995), 423-431. Google Scholar

[49]

Internat. J. of Solid. Struct., 42 (2005), 3439-3457. doi: 10.1016/j.ijsolstr.2004.11.006.  Google Scholar

[50]

Control Cybernet., 29 (2000), 341-365.  Google Scholar

[51]

Materials Sci. Engrg. A, 438-440 (2006), 454-458. doi: 10.1016/j.msea.2006.01.104.  Google Scholar

[52]

Int. J. Plasticity, 23 (2007), 1679-1720. doi: 10.1016/j.ijplas.2007.03.011.  Google Scholar

[53]

European J. Mech. A Solids, 13 (1994), 21-50. Google Scholar

[54]

Int. J. Plasticity, 28 (2008), 455-482. doi: 10.1016/j.ijplas.2007.05.005.  Google Scholar

[55]

Interfaces Free Bound., 4 (2002), 111-136. doi: 10.4171/IFB/55.  Google Scholar

[56]

in Nonlinear Homogenization and its Appl. to Composites, Polycrystals and Smart Materials, eds. P. Ponte Castaneda, J. J. Telega and B. Gambin, NATO Sci. Series II/170 (Kluwer, 2004), 269-304.  Google Scholar

[57]

Eur. J. Mech. A/Solids, 17 (1998), 789-806. doi: 10.1016/S0997-7538(98)80005-3.  Google Scholar

[58]

J. Mech. Phys. Solids, 49 (2001), 709-737. doi: 10.1016/S0022-5096(00)00061-2.  Google Scholar

[59]

Comput. Materials Sci., 41 (2007), 208-221. doi: 10.1016/j.commatsci.2007.04.006.  Google Scholar

[60]

Progress in Nonlinear Differential Equations and their Applications, 28. Birkhäuser Boston, MA, 1996.  Google Scholar

[61]

SIAM J. Math. Anal., 38 (2007), 1733-1759. doi: 10.1137/060653159.  Google Scholar

[1]

Michela Eleuteri, Luca Lussardi. Thermal control of a rate-independent model for permanent inelastic effects in shape memory materials. Evolution Equations & Control Theory, 2014, 3 (3) : 411-427. doi: 10.3934/eect.2014.3.411

[2]

S. Gatti, Elena Sartori. Well-posedness results for phase field systems with memory effects in the order parameter dynamics. Discrete & Continuous Dynamical Systems, 2003, 9 (3) : 705-726. doi: 10.3934/dcds.2003.9.705

[3]

Tayeb Hadj Kaddour, Michael Reissig. Global well-posedness for effectively damped wave models with nonlinear memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021057

[4]

Jan Prüss, Vicente Vergara, Rico Zacher. Well-posedness and long-time behaviour for the non-isothermal Cahn-Hilliard equation with memory. Discrete & Continuous Dynamical Systems, 2010, 26 (2) : 625-647. doi: 10.3934/dcds.2010.26.625

[5]

Huafei Di, Yadong Shang, Xiaoxiao Zheng. Global well-posedness for a fourth order pseudo-parabolic equation with memory and source terms. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 781-801. doi: 10.3934/dcdsb.2016.21.781

[6]

Aissa Guesmia, Nasser-eddine Tatar. Some well-posedness and stability results for abstract hyperbolic equations with infinite memory and distributed time delay. Communications on Pure & Applied Analysis, 2015, 14 (2) : 457-491. doi: 10.3934/cpaa.2015.14.457

[7]

Markus Grasmair. Well-posedness and convergence rates for sparse regularization with sublinear $l^q$ penalty term. Inverse Problems & Imaging, 2009, 3 (3) : 383-387. doi: 10.3934/ipi.2009.3.383

[8]

Mario Bukal. Well-posedness and convergence of a numerical scheme for the corrected Derrida-Lebowitz-Speer-Spohn equation using the Hellinger distance. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3389-3414. doi: 10.3934/dcds.2021001

[9]

Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. I. Well-posedness and convergence of the method of lines. Inverse Problems & Imaging, 2013, 7 (2) : 307-340. doi: 10.3934/ipi.2013.7.307

[10]

Vanessa Barros, Felipe Linares. A remark on the well-posedness of a degenerated Zakharov system. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1259-1274. doi: 10.3934/cpaa.2015.14.1259

[11]

Boris Kolev. Local well-posedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167-189. doi: 10.3934/jgm.2017007

[12]

Lin Shen, Shu Wang, Yongxin Wang. The well-posedness and regularity of a rotating blades equation. Electronic Research Archive, 2020, 28 (2) : 691-719. doi: 10.3934/era.2020036

[13]

Elissar Nasreddine. Well-posedness for a model of individual clustering. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2647-2668. doi: 10.3934/dcdsb.2013.18.2647

[14]

Jerry Bona, Nikolay Tzvetkov. Sharp well-posedness results for the BBM equation. Discrete & Continuous Dynamical Systems, 2009, 23 (4) : 1241-1252. doi: 10.3934/dcds.2009.23.1241

[15]

Thomas Y. Hou, Congming Li. Global well-posedness of the viscous Boussinesq equations. Discrete & Continuous Dynamical Systems, 2005, 12 (1) : 1-12. doi: 10.3934/dcds.2005.12.1

[16]

David M. Ambrose, Jerry L. Bona, David P. Nicholls. Well-posedness of a model for water waves with viscosity. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1113-1137. doi: 10.3934/dcdsb.2012.17.1113

[17]

A. Alexandrou Himonas, Curtis Holliman. On well-posedness of the Degasperis-Procesi equation. Discrete & Continuous Dynamical Systems, 2011, 31 (2) : 469-488. doi: 10.3934/dcds.2011.31.469

[18]

Mircea Sofonea, Yi-bin Xiao. Tykhonov well-posedness of a viscoplastic contact problem. Evolution Equations & Control Theory, 2020, 9 (4) : 1167-1185. doi: 10.3934/eect.2020048

[19]

Nils Strunk. Well-posedness for the supercritical gKdV equation. Communications on Pure & Applied Analysis, 2014, 13 (2) : 527-542. doi: 10.3934/cpaa.2014.13.527

[20]

Massimo Cicognani, Michael Reissig. Well-posedness for degenerate Schrödinger equations. Evolution Equations & Control Theory, 2014, 3 (1) : 15-33. doi: 10.3934/eect.2014.3.15

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (49)
  • HTML views (0)
  • Cited by (11)

[Back to Top]