• Previous Article
    Existence and approximation of probability measure solutions to models of collective behaviors
  • NHM Home
  • This Issue
  • Next Article
    Recognition of crowd behavior from mobile sensors with pattern analysis and graph clustering methods
September  2011, 6(3): 545-560. doi: 10.3934/nhm.2011.6.545

Empirical results for pedestrian dynamics and their implications for modeling

1. 

Institute for Theoretical Physics, University of Cologne, 50937 Köln

2. 

Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich

Received  December 2010 Revised  May 2011 Published  August 2011

The current status of empirical results for pedestrian dynamics is reviewd. Suprisingly even for basic quantities like the flow-density relation there is currently no consensus since the results obtained in various empirical and experimental studies deviate substantially. We report results from recent large-scale experiments for pedestrian flow in simple scenarios like long corridors and bottlenecks which have been performed under controlled laboratory conditions that are easily reproducible. Finally the implications of the unsatisfactory empirical situation for the modeling of pedestrian dynamics is discussed.
Citation: Andreas Schadschneider, Armin Seyfried. Empirical results for pedestrian dynamics and their implications for modeling. Networks and Heterogeneous Media, 2011, 6 (3) : 545-560. doi: 10.3934/nhm.2011.6.545
References:
[1]

M. Boltes, A. Seyfried, B. Steffen and A. Schadschneider, Automatic extraction of pedestrian trajectories from video recordings,, in [12], (). 

[2]

D. Challet, M. Marsili and Y.-C. Zhang, Stylized facts of financial markets and market crashes in Minority Games, Physica A, 294 (2001), 514. doi: 10.1016/S0378-4371(01)00103-0.

[3]

U. Chattaraj, A. Seyfried and P. Chakroborty, Comparison of pedestrian fundamental diagram across cultures, Adv. Comp. Sys., 12 (2009), 393. doi: 10.1142/S0219525909002209.

[4]

W. Daamen and S. Hoogendoorn, Capacity of doors during evacuation conditions, Procedia Engineering, 3 (2010), 53-66. doi: 10.1016/j.proeng.2010.07.007.

[5]

W. Daamen and S. Hoogendoorn, "Empirical Differences Between Time Mean Speed and Space Mean Speed," Traffic and Granular Flow '07, p. 351, Springer, 2009.

[6]

D. Dieckmann, "Die Feuersicherheit in Theatern," in German, Jung (München), 1911.

[7]

J. J. Fruin, "Pedestrian Planning and Design," Metropolitan Association of Urban Designers and Environmental Planners, New York, 1971.

[8]

D. Helbing, A. Johansson and H. Al Abideen, Dynamics of crowd disasters: an empirical study, Phys. Rev. E, 75 (2007), 046109. doi: 10.1103/PhysRevE.75.046109.

[9]

S. Hoogendoorn and W. Daamen, Pedestrian behavior at bottlenecks, Transp. Sc., 39 (2005), 147-159. doi: 10.1287/trsc.1040.0102.

[10]

S. Hoogendoorn and W. Daamen, A novel calibration approach of microscopic pedestrian models,, in [38], (). 

[11]

B. S. Kerner, "The Physics of Traffic," Springer, Berlin, 2004.

[12]

W. Klingsch, C. Rogsch, A. Schadschneider and M. Schreckenberg, eds., "Pedestrian and Evacuation Dynamics 2008," Springer, 2010.

[13]

T. Kretz, A. Grünebohm and M. Schreckenberg, Experimental study of pedestrian flow through a bottleneck, J. Stat. Mech., (2006), P10014. doi: 10.1088/1742-5468/2006/10/P10014.

[14]

W. Leutzbach, "Introduction to the Theory of Traffic Flow," Springer, Berlin, 1988.

[15]

J. Liddle, A. Seyfried, T. Rupprecht, W. Klingsch, A. Schadschneider and A. Winkens, "An Experimental Study of Pedestrian Congestions: Influence of Bottleneck Width and Length," Traffic and Granular Flow 2009, Springer, 2011.

[16]

M. Moussaid, D. Helbing, S. Garnier, A. Johanson, M. Combe and G. Theraulaz, Experimental study of the behavioral underlying mechanism underlying self-organization in human crowd, Proc. Royal Society B: Biol. Sci., 276 (2009), 2755-2762. doi: 10.1098/rspb.2009.0405.

[17]

H. Muir, D. Bottomley and C. Marrison, Effects of motivation and cabin configuration on emergency aircraft evacuation behavior and rates of egress, Int. Jour. Aviation Psychology, 6 (1996), 57-77. doi: 10.1207/s15327108ijap0601_4.

[18]

K. Müller, "Die Gestaltung und Bemessung von Fluchtwegen für die Evakuierung von Personen aus Gebäuden," Dissertation, Technische Hochschule Magdeburg, 1981.

[19]

R. Nagai, M. Fukamachi and T. Nagatani, Evacuation of crawlers and walkers from corridor through an exit, Physica A, 367 (2006), 449-460. doi: 10.1016/j.physa.2005.11.031.

[20]

P. D. Navin and R. J. Wheeler, Pedestrian flow characteristics, Traffic Engineering, 39 (1969), 31-36.

[21]

H. E. Nelson and F. W. Mowrer, Emergency movement, in "SFPE Handbook of Fire Protection Engineering" (ed. P. J. DiNenno), Third edition, 2002.

[22]

D. Oeding, "Verkehrsbelastung und Dimensionierung von Gehwegen und anderen Anlagen des Fuβgängerverkehrs," Internal Report, 22 (in German), Technical University Braunschweig, 1963.

[23]

S. J. Older, Movement of pedestrians on footways in shopping streets, Traffic Engineering and Control, 10 (1968), 160-163.

[24]

V. Popkov and G. Schütz, Steady-state selection in driven diffusive systems with open boundaries, Europhys. Lett., 48 (1999), 257. doi: 10.1209/epl/i1999-00474-0.

[25]

A. Portz and A. Seyfried, Modeling stop-and-go waves in pedestrian dynamics, in "PPAM 2009" (eds. R. Wyrzykowski, J. Dongarra, K. Karczewski and J. Wasniewski), Part II, Springer, (2010), 561-568.

[26]

V. M. Predtechenskii and A. I. Milinskii, "Planning for Foot Traffic Flow in Buildings," Amerind Publishing, New Dehli, 1978.

[27]

B. Pushkarev and J. M. Zupan, Capacity of walkways, Transp. Res. Rec., 538 (1975), 1-15.

[28]

A. Schadschneider, D. Chowdhury and K. Nishinari, "Stochastic Transport in Complex Systems," Elsevier, 2010.

[29]

A. Schadschneider, W. Klingsch, H. Klüpfel, T. Kretz, C. Rogsch and A. Seyfried, Evacuation dynamics: Empirical results, modeling and applications, Encyclopedia of Complexity and System Science, (2009), 3142.

[30]

A. Schadschneider and A. Seyfried, Empirical results for pedestrian dynamics and their implications for cellular automata models,, in [38], (). 

[31]

A. Seyfried et al., Cultural effects on the fundamental diagram of pedestrian motion,, in preparation., (). 

[32]

A. Seyfried, M. Boltes, J. Kähler, W. Klingsch, A. Portz, T. Rupprecht, A. Schadschneider, B. Steffen and A. Winkens, Enhanced empirical data for the fundamental diagram and the flow through bottlenecks,, in [12], (): 145. 

[33]

A. Seyfried. O. Passon, B. Steffen, M. Boltes, T. Rupprecht and W. Klingsch, New insights into pedestrian flow through bottlenecks, Transp. Sc., 43 (2009), 395-406. doi: 10.1287/trsc.1090.0263.

[34]

A. Seyfried, A. Portz and A. Schadschneider, Phase coexistence in congested states of pedestrian dynamics, in "Cellular Automata" (eds. S. Bandini, S. Manzoni, H. Umeo and G. Vizzari), LNCS 6350, Springer, (2010), 496-505. doi: 10.1007/978-3-642-15979-4_53.

[35]

A. Seyfried and A. Schadschneider, Validation of cellular automata models of pedestrian dynamics using controlled large-scale experiments, Cybernetics and Systems, 40 (2009), 367.

[36]

A. Seyfried, B. Steffen, W. Klingsch and M. Boltes, The fundamental diagram of pedestrian movement revisited, J. Stat. Mech., (2005), P10002.

[37]

B. Steffen and A. Seyfried, Methods for measuring pedestrian density, flow, speed and direction with minimal scatter, Physica A, 389 (2010), 1902-1910. doi: 10.1016/j.physa.2009.12.015.

[38]

H. Timmermans, ed., "Pedestrian Behavior," Emerald, 2009.

[39]

P. A. Thompson and E. W. Marchant, A computer model for the evacuation of large building populations, Fire Safety Journal, 24 (1995), 131-148. doi: 10.1016/0379-7112(95)00019-P.

[40]

M. Treiber, A. Kesting and D. Helbing, Three-phase traffic theory and two-phase models with a fundamental diagram in the light of empirical stylized facts, Transp. Res. B, 44 (2010), 8983. doi: 10.1016/j.trb.2010.03.004.

[41]

U. Weidmann, "Transporttechnik der Fussgänger," Schriftenreihe des IVT, 90, ETH Zürich, 1993.

[42]

J. Zhang, W. Klingsch, A. Schadschneider and A. Seyfried, Transitions in pedestrian fundamental diagrams of straight corridors and T-junctions, J. Stat. Mech., (2011) P06004. doi: 10.1088/1742-5468/2011/06/P06004.

show all references

References:
[1]

M. Boltes, A. Seyfried, B. Steffen and A. Schadschneider, Automatic extraction of pedestrian trajectories from video recordings,, in [12], (). 

[2]

D. Challet, M. Marsili and Y.-C. Zhang, Stylized facts of financial markets and market crashes in Minority Games, Physica A, 294 (2001), 514. doi: 10.1016/S0378-4371(01)00103-0.

[3]

U. Chattaraj, A. Seyfried and P. Chakroborty, Comparison of pedestrian fundamental diagram across cultures, Adv. Comp. Sys., 12 (2009), 393. doi: 10.1142/S0219525909002209.

[4]

W. Daamen and S. Hoogendoorn, Capacity of doors during evacuation conditions, Procedia Engineering, 3 (2010), 53-66. doi: 10.1016/j.proeng.2010.07.007.

[5]

W. Daamen and S. Hoogendoorn, "Empirical Differences Between Time Mean Speed and Space Mean Speed," Traffic and Granular Flow '07, p. 351, Springer, 2009.

[6]

D. Dieckmann, "Die Feuersicherheit in Theatern," in German, Jung (München), 1911.

[7]

J. J. Fruin, "Pedestrian Planning and Design," Metropolitan Association of Urban Designers and Environmental Planners, New York, 1971.

[8]

D. Helbing, A. Johansson and H. Al Abideen, Dynamics of crowd disasters: an empirical study, Phys. Rev. E, 75 (2007), 046109. doi: 10.1103/PhysRevE.75.046109.

[9]

S. Hoogendoorn and W. Daamen, Pedestrian behavior at bottlenecks, Transp. Sc., 39 (2005), 147-159. doi: 10.1287/trsc.1040.0102.

[10]

S. Hoogendoorn and W. Daamen, A novel calibration approach of microscopic pedestrian models,, in [38], (). 

[11]

B. S. Kerner, "The Physics of Traffic," Springer, Berlin, 2004.

[12]

W. Klingsch, C. Rogsch, A. Schadschneider and M. Schreckenberg, eds., "Pedestrian and Evacuation Dynamics 2008," Springer, 2010.

[13]

T. Kretz, A. Grünebohm and M. Schreckenberg, Experimental study of pedestrian flow through a bottleneck, J. Stat. Mech., (2006), P10014. doi: 10.1088/1742-5468/2006/10/P10014.

[14]

W. Leutzbach, "Introduction to the Theory of Traffic Flow," Springer, Berlin, 1988.

[15]

J. Liddle, A. Seyfried, T. Rupprecht, W. Klingsch, A. Schadschneider and A. Winkens, "An Experimental Study of Pedestrian Congestions: Influence of Bottleneck Width and Length," Traffic and Granular Flow 2009, Springer, 2011.

[16]

M. Moussaid, D. Helbing, S. Garnier, A. Johanson, M. Combe and G. Theraulaz, Experimental study of the behavioral underlying mechanism underlying self-organization in human crowd, Proc. Royal Society B: Biol. Sci., 276 (2009), 2755-2762. doi: 10.1098/rspb.2009.0405.

[17]

H. Muir, D. Bottomley and C. Marrison, Effects of motivation and cabin configuration on emergency aircraft evacuation behavior and rates of egress, Int. Jour. Aviation Psychology, 6 (1996), 57-77. doi: 10.1207/s15327108ijap0601_4.

[18]

K. Müller, "Die Gestaltung und Bemessung von Fluchtwegen für die Evakuierung von Personen aus Gebäuden," Dissertation, Technische Hochschule Magdeburg, 1981.

[19]

R. Nagai, M. Fukamachi and T. Nagatani, Evacuation of crawlers and walkers from corridor through an exit, Physica A, 367 (2006), 449-460. doi: 10.1016/j.physa.2005.11.031.

[20]

P. D. Navin and R. J. Wheeler, Pedestrian flow characteristics, Traffic Engineering, 39 (1969), 31-36.

[21]

H. E. Nelson and F. W. Mowrer, Emergency movement, in "SFPE Handbook of Fire Protection Engineering" (ed. P. J. DiNenno), Third edition, 2002.

[22]

D. Oeding, "Verkehrsbelastung und Dimensionierung von Gehwegen und anderen Anlagen des Fuβgängerverkehrs," Internal Report, 22 (in German), Technical University Braunschweig, 1963.

[23]

S. J. Older, Movement of pedestrians on footways in shopping streets, Traffic Engineering and Control, 10 (1968), 160-163.

[24]

V. Popkov and G. Schütz, Steady-state selection in driven diffusive systems with open boundaries, Europhys. Lett., 48 (1999), 257. doi: 10.1209/epl/i1999-00474-0.

[25]

A. Portz and A. Seyfried, Modeling stop-and-go waves in pedestrian dynamics, in "PPAM 2009" (eds. R. Wyrzykowski, J. Dongarra, K. Karczewski and J. Wasniewski), Part II, Springer, (2010), 561-568.

[26]

V. M. Predtechenskii and A. I. Milinskii, "Planning for Foot Traffic Flow in Buildings," Amerind Publishing, New Dehli, 1978.

[27]

B. Pushkarev and J. M. Zupan, Capacity of walkways, Transp. Res. Rec., 538 (1975), 1-15.

[28]

A. Schadschneider, D. Chowdhury and K. Nishinari, "Stochastic Transport in Complex Systems," Elsevier, 2010.

[29]

A. Schadschneider, W. Klingsch, H. Klüpfel, T. Kretz, C. Rogsch and A. Seyfried, Evacuation dynamics: Empirical results, modeling and applications, Encyclopedia of Complexity and System Science, (2009), 3142.

[30]

A. Schadschneider and A. Seyfried, Empirical results for pedestrian dynamics and their implications for cellular automata models,, in [38], (). 

[31]

A. Seyfried et al., Cultural effects on the fundamental diagram of pedestrian motion,, in preparation., (). 

[32]

A. Seyfried, M. Boltes, J. Kähler, W. Klingsch, A. Portz, T. Rupprecht, A. Schadschneider, B. Steffen and A. Winkens, Enhanced empirical data for the fundamental diagram and the flow through bottlenecks,, in [12], (): 145. 

[33]

A. Seyfried. O. Passon, B. Steffen, M. Boltes, T. Rupprecht and W. Klingsch, New insights into pedestrian flow through bottlenecks, Transp. Sc., 43 (2009), 395-406. doi: 10.1287/trsc.1090.0263.

[34]

A. Seyfried, A. Portz and A. Schadschneider, Phase coexistence in congested states of pedestrian dynamics, in "Cellular Automata" (eds. S. Bandini, S. Manzoni, H. Umeo and G. Vizzari), LNCS 6350, Springer, (2010), 496-505. doi: 10.1007/978-3-642-15979-4_53.

[35]

A. Seyfried and A. Schadschneider, Validation of cellular automata models of pedestrian dynamics using controlled large-scale experiments, Cybernetics and Systems, 40 (2009), 367.

[36]

A. Seyfried, B. Steffen, W. Klingsch and M. Boltes, The fundamental diagram of pedestrian movement revisited, J. Stat. Mech., (2005), P10002.

[37]

B. Steffen and A. Seyfried, Methods for measuring pedestrian density, flow, speed and direction with minimal scatter, Physica A, 389 (2010), 1902-1910. doi: 10.1016/j.physa.2009.12.015.

[38]

H. Timmermans, ed., "Pedestrian Behavior," Emerald, 2009.

[39]

P. A. Thompson and E. W. Marchant, A computer model for the evacuation of large building populations, Fire Safety Journal, 24 (1995), 131-148. doi: 10.1016/0379-7112(95)00019-P.

[40]

M. Treiber, A. Kesting and D. Helbing, Three-phase traffic theory and two-phase models with a fundamental diagram in the light of empirical stylized facts, Transp. Res. B, 44 (2010), 8983. doi: 10.1016/j.trb.2010.03.004.

[41]

U. Weidmann, "Transporttechnik der Fussgänger," Schriftenreihe des IVT, 90, ETH Zürich, 1993.

[42]

J. Zhang, W. Klingsch, A. Schadschneider and A. Seyfried, Transitions in pedestrian fundamental diagrams of straight corridors and T-junctions, J. Stat. Mech., (2011) P06004. doi: 10.1088/1742-5468/2011/06/P06004.

[1]

Mohcine Chraibi, Ulrich Kemloh, Andreas Schadschneider, Armin Seyfried. Force-based models of pedestrian dynamics. Networks and Heterogeneous Media, 2011, 6 (3) : 425-442. doi: 10.3934/nhm.2011.6.425

[2]

Dirk Hartmann, Isabella von Sivers. Structured first order conservation models for pedestrian dynamics. Networks and Heterogeneous Media, 2013, 8 (4) : 985-1007. doi: 10.3934/nhm.2013.8.985

[3]

Martin Burger, Marco Di Francesco, Peter A. Markowich, Marie-Therese Wolfram. Mean field games with nonlinear mobilities in pedestrian dynamics. Discrete and Continuous Dynamical Systems - B, 2014, 19 (5) : 1311-1333. doi: 10.3934/dcdsb.2014.19.1311

[4]

Paweł Góra, Abraham Boyarsky, Zhenyang LI, Harald Proppe. Statistical and deterministic dynamics of maps with memory. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4347-4378. doi: 10.3934/dcds.2017186

[5]

Daewa Kim, Annalisa Quaini. A kinetic theory approach to model pedestrian dynamics in bounded domains with obstacles. Kinetic and Related Models, 2019, 12 (6) : 1273-1296. doi: 10.3934/krm.2019049

[6]

Alessandro Corbetta, Adrian Muntean, Kiamars Vafayi. Parameter estimation of social forces in pedestrian dynamics models via a probabilistic method. Mathematical Biosciences & Engineering, 2015, 12 (2) : 337-356. doi: 10.3934/mbe.2015.12.337

[7]

Yuri B. Gaididei, Christian Marschler, Mads Peter Sørensen, Peter L. Christiansen, Jens Juul Rasmussen. Pattern formation in flows of asymmetrically interacting particles: Peristaltic pedestrian dynamics as a case study. Evolution Equations and Control Theory, 2019, 8 (1) : 73-100. doi: 10.3934/eect.2019005

[8]

Wenming Li, Yongge Tian, Ruixia Yuan. Statistical analysis of a linear regression model with restrictions and superfluous variables. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022079

[9]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete and Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[10]

Fumio Ishizaki. Analysis of the statistical time-access fairness index of one-bit feedback fair scheduler. Numerical Algebra, Control and Optimization, 2011, 1 (4) : 675-689. doi: 10.3934/naco.2011.1.675

[11]

Ikuo Arizono, Yasuhiko Takemoto. Statistical mechanics approach for steady-state analysis in M/M/s queueing system with balking. Journal of Industrial and Management Optimization, 2022, 18 (1) : 25-44. doi: 10.3934/jimo.2020141

[12]

Fritz Colonius, Marco Spadini. Fundamental semigroups for dynamical systems. Discrete and Continuous Dynamical Systems, 2006, 14 (3) : 447-463. doi: 10.3934/dcds.2006.14.447

[13]

Bachir Bar, Tewfik Sari. The operating diagram for a model of competition in a chemostat with an external lethal inhibitor. Discrete and Continuous Dynamical Systems - B, 2020, 25 (6) : 2093-2120. doi: 10.3934/dcdsb.2019203

[14]

Satoshi Kosugi, Yoshihisa Morita, Shoji Yotsutani. A complete bifurcation diagram of the Ginzburg-Landau equation with periodic boundary conditions. Communications on Pure and Applied Analysis, 2005, 4 (3) : 665-682. doi: 10.3934/cpaa.2005.4.665

[15]

Expeditho Mtisi, Herieth Rwezaura, Jean Michel Tchuenche. A mathematical analysis of malaria and tuberculosis co-dynamics. Discrete and Continuous Dynamical Systems - B, 2009, 12 (4) : 827-864. doi: 10.3934/dcdsb.2009.12.827

[16]

Yang Kuang, John D. Nagy, James J. Elser. Biological stoichiometry of tumor dynamics: Mathematical models and analysis. Discrete and Continuous Dynamical Systems - B, 2004, 4 (1) : 221-240. doi: 10.3934/dcdsb.2004.4.221

[17]

Fabio Camilli, Adriano Festa, Silvia Tozza. A discrete Hughes model for pedestrian flow on graphs. Networks and Heterogeneous Media, 2017, 12 (1) : 93-112. doi: 10.3934/nhm.2017004

[18]

Raul Borsche, Anne Meurer. Interaction of road networks and pedestrian motion at crosswalks. Discrete and Continuous Dynamical Systems - S, 2014, 7 (3) : 363-377. doi: 10.3934/dcdss.2014.7.363

[19]

Adriano Festa, Andrea Tosin, Marie-Therese Wolfram. Kinetic description of collision avoidance in pedestrian crowds by sidestepping. Kinetic and Related Models, 2018, 11 (3) : 491-520. doi: 10.3934/krm.2018022

[20]

Pierre Degond, Cécile Appert-Rolland, Julien Pettré, Guy Theraulaz. Vision-based macroscopic pedestrian models. Kinetic and Related Models, 2013, 6 (4) : 809-839. doi: 10.3934/krm.2013.6.809

2020 Impact Factor: 1.213

Metrics

  • PDF downloads (274)
  • HTML views (0)
  • Cited by (25)

Other articles
by authors

[Back to Top]