\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the convergence rate in multiscale homogenization of fully nonlinear elliptic problems

Abstract Related Papers Cited by
  • This paper concerns periodic multiscale homogenization for fully nonlinear equations of the form $u^\epsilon+H^\epsilon (x,\frac{x}{\epsilon},\ldots,\frac{x}{epsilon^k},Du^\epsilon,D^2u^\epsilon)=0$. The operators $H^\epsilon$ are a regular perturbations of some uniformly elliptic, convex operator $H$. As $\epsilon\to 0^+$, the solutions $u^\epsilon$ converge locally uniformly to the solution $u$ of a suitably defined effective problem. The purpose of this paper is to obtain an estimate of the corresponding rate of convergence. Finally, some examples are discussed.
    Mathematics Subject Classification: Primary: 35B27; Secondary: 35J60, 49L25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    O. Alvarez and M. Bardi, Viscosity solutions methods for singular perturbations in deterministic and stochastic control, SIAM J. Control Optim., 40 (2001), 1159-1188.doi: 10.1137/S0363012900366741.

    [2]

    O. Alvarez and M. Bardi, Singular perturbations of nonlinear degenerate parabolic PDEs: A general convergence result, Arch. Ration. Mech. Anal., 170 (2003), 17-61.doi: 10.1007/s00205-003-0266-5.

    [3]

    O. Alvarez and M. Bardi, Ergodicity, stabilization, and singular perturbations for Bellman-Isaacs equation, Mem. Amer. Math. Soc., 204 (2010).

    [4]

    O. Alvarez, M. Bardi and C. Marchi, Multiscale problems and homogenizations for second-order Hamilton-Jacobi equations, J. Differential Equations, 243 (2007), 349-387.doi: 10.1016/j.jde.2007.05.027.

    [5]

    O. Alvarez, M. Bardi and C. Marchi, Multiscale singular perturbation and homogenization of optimal control problems, in "Geometric Control and Nonsmooth Analysis" (F. Ancona, A. Bressan, P. Cannarsa, F. Clarke, P.R. Wolenski; Eds.), World Scientific, Singapore, 2008, 1-27.

    [6]

    M. Arisawa and P. L. Lions, On ergodic stochastic control, Comm. Partial Differential Equations, 23 (1998), 2187-2217.

    [7]

    G. Barles and E. R. Jakobsen, On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations, M2AN Math. Model. Numer. Anal., 36 (2002), 33-54.doi: 10.1051/m2an:2002002.

    [8]

    A. Braides and A. Defranceschi, "Homogenization of Multiple Integrals,'' Clarendon Press, Oxford, 1998.

    [9]

    A. Bensoussan, J. L. Lions and G. Papanicolaou, "Asymptotic Analysis for Periodic Structures,'' North-Holland, Amsterdam, 1978.

    [10]

    L. A. Caffarelli, P. Souganidis and L. Wang, Homogenization of fully nonlinear, uniformly elliptic and parabolic partial differential equations in stationary ergodic media, Comm. Pure Appl. Math., 58 (2005), 319-361.doi: 10.1002/cpa.20069.

    [11]

    F. Camilli and C. Marchi, Rates of convergence in periodic homogenization of fully nonlinear uniformly elliptic PDEs, Nonlinearity, 22 (2009), 1481-1498.doi: 10.1088/0951-7715/22/6/011.

    [12]

    I. Capuzzo Dolcetta and H. Ishii, On the rate of convergence in Homogenization of Hamilton-Jacobi equations, Indiana Univ. Math. J., 50 (2001), 1113-1129.doi: 10.1512/iumj.2001.50.1933.

    [13]

    M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1-67.

    [14]

    L. Evans, The perturbed test function method for viscosity solutions of nonlinear P.D.E., Proc. Roy. Soc. Edinburgh Sect. A, 111 (1989), 359-375.

    [15]

    L. Evans, Periodic homogenisation of certain fully nonlinear partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A, 120 (1992), 245-265.

    [16]

    W. H. Fleming and H. M. Soner, "Controlled Markov Processes and Viscosity Solutions,'' Springer-Verlag, Berlin, 1993.

    [17]

    W. H. Fleming and P. E. Souganidis, On the existence of value functions of two-players, zero-sum stochastic differential games, Indiana Univ. Math. J., 38 (1989), 293-314.doi: 10.1512/iumj.1989.38.38015.

    [18]

    D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,'' 2nd edition, Springer, Berlin, 1983.

    [19]

    V. V. Jikov, S. M. Kozlov and O. A. Oleinik, "Homogenization of Differential Operators and Integral Functionals,'' Springer, Berlin, 1994.

    [20]

    N. V. Krylov, On the rate of convergence of finite-difference approximations for Bellman's equations with variable coefficients, Probab. Theory Related Fields, 117 (2000), 1-16.doi: 10.1007/s004400050264.

    [21]

    O. A. Ladyzhenskaya and N. N. Ural'tseva, "Linear and Quasilinear Elliptic Equations,'' Academic Press, New York, 1968.

    [22]

    P. L. Lions, G. Papanicolaou and S. R. S. Varadhan, Homogeneization of Hamilton-Jacobi equations, Unpublished, 1986.

    [23]

    P.L. Lions and P. Souganidis, Homogenization of "viscous'' Hamilton-Jacobi equations in stationary ergodic media, Comm. Partial Differential Equations, 30 (2005), 335-375.doi: 10.1081/PDE-200050077.

    [24]

    P. L. Lions and P. Souganidis, Homogenization of degenerate second-order PDE in periodic and almost periodic environments and applications, Ann. Inst. H. Poincarè Anal. Non Linèaire, 22 (2005), 667-677.doi: 10.1016/j.anihpc.2004.10.009.

    [25]

    C. Marchi, Rate of convergence for multiscale homogenization of Hamilton-Jacobi equations, Proc. Roy. Soc. Edinburgh Sect. A, 139 (2009), 519-539.doi: 10.1017/S0308210507000704.

    [26]

    M. V. Safonov, Classical solution of nonlinear elliptic equations of second-order, Math. USSR-Izv., 33 (1989), 597-612. (Engl. transl. of Izv. Akad. Nauk SSSR Ser. Mat., 52 (1988)).

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(107) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return