\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global existence and long-time behavior of entropy weak solutions to a quasilinear hyperbolic blood flow model

Abstract Related Papers Cited by
  • This paper is concerned with an initial-boundary value problem on bounded domains for a one dimensional quasilinear hyperbolic model of blood flow with viscous damping. It is shown that $L^\infty$ entropy weak solutions exist globally in time when the initial data are large, rough and contains vacuum states. Furthermore, based on entropy principle and the theory of divergence measure field, it is shown that any $L^\infty$ entropy weak solution converges to a constant equilibrium state exponentially fast as time goes to infinity. The physiological relevance of the theoretical results obtained in this paper is demonstrated.
    Mathematics Subject Classification: Primary: 35L50, 35L65; Secondary: 92C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Anliker, R. L. Rockwell and E. Ogden, Nonlinear analysis of flow pulses and shock waves in arteries, Part I: Derivation and properties of mathematical model, Z. Angew. Math. Phys., 22 (1971), 217-246.doi: 10.1007/BF01591407.

    [2]

    A. C. L. Barnard, W. A. Hunt, W. P. Timlake and E. Varley, A theory of fluid flow in compliant tubes, Biophysical J., 6 (1966), 717-724.doi: 10.1016/S0006-3495(66)86690-0.

    [3]

    S. Čanić, Blood flow through compliant vessels after endovascular repair: Wall deformations induced by the discontinuous wall properties, Computing and Visualization in Science, 4 (2002), 147-155.doi: 10.1007/s007910100066.

    [4]

    S. Čanić and E. H. Kim, Mathematical analysis of the quasilinear effects in a hyperbolic model blood flow through compliant axi-symmetric vessels, Math. Methods Appl. Sci., 26 (2003), 1161-1186.

    [5]

    S. Čanić, D. Lamponi, A. Mikelić and J. Tambača, Self-consistent effective equations modeling blood flow in medium-to-large compliant arteries, Multiscale Model. Simul., 3 (2005), 559-596.

    [6]

    S. Čanić and D. Mirković, A hyperbolic system of conservation laws in modeling endovascular treatment of abdominal aortic aneurysm, in "Hyperbolic Problems: Theory, Numerics, Applications'' (eds. H. Freistühler and G. Warnecke), Vol. I, II, International Series of Numerical Mathematics, 140, 141, Birkhäuser, Basel, (2001), 227-236.

    [7]

    G.-Q. Chen and H. Frid, Divergence-measure fields and hyperbolic conservation laws, Arch. Rat. Mech. Anal., 147 (1999), 89-118.doi: 10.1007/s002050050146.

    [8]

    G.-Q. Chen and H. Frid, Vanishing viscosity limit for initial-boundary value problems for conservation laws, in "Nonlinear Partial Differntial Equations" (Evanston, IL, 1998), Contemp. Math., 238, Amer. Math. Soc., Providence, RI, (1999), 35-51.

    [9]

    K. N. Chueh, C. C. Conley and J. A. Smoller, Positively invariant regions for systems of nonlinear diffusion equations, Indiana Univ. Math. J., 26 (1977), 373-392.doi: 10.1512/iumj.1977.26.26029.

    [10]

    X. X. Ding, G. Q. Chen and P. Z. Luo, Convergence of the fraction step Lax-Friedrichs scheme and Godunov scheme for the isentropic system of gas dynamics, Comm. Math. Phys., 121 (1989), 63-84.doi: 10.1007/BF01218624.

    [11]

    R. J. DiPerna, Convergence of the viscosity method for isentropic gas dynamics, Comm. Math. Phys., 91 (1983), 1-30.doi: 10.1007/BF01206047.

    [12]

    L. Formaggia, F. Nobile and A. Quarteroni, A one-dimensional model for blood flow: Application to vascular prosthesis, in "Mathematical Modelling and Numerical Simulation in Continuum Mechanics" (Yamaguchi, 2000), Lecture Notes in Computational Science and Engineering, 19, Springer, Berlin, (2002).

    [13]

    L. Formaggia, F. Nobile, A. Quarteroni and A. Veneziani, Multiscale modeling of the circulatory system: A preliminary analysis, Computing and Visualization in Science, 2 (1999), 75-83.doi: 10.1007/s007910050030.

    [14]

    A. Heidrich, Global weak solutions to initial-boundary-value problems for the one-dimensional quasilinear wave equation with large data, Arch. Rat. Mech. Anal., 126 (1994), 333-368.doi: 10.1007/BF00380896.

    [15]

    L. Hsiao and K. J. Zhang, The global weak solution and relaxation limits of the initial-boundary value problem to the bipolar hydrodynamic model for semiconductors, Math. Models Methods Appl. Sci., 10 (2000), 1333-1361.doi: 10.1142/S0218202500000653.

    [16]

    F. M. Huang, P. Marcati and R. H. Pan, Convergence to Barenblatt solution for the compressible Euler equations with damping and vacuum, Arch. Ration. Mech. Anal., 176 (2005), 1-24.doi: 10.1007/s00205-004-0349-y.

    [17]

    F. M. Huang and R. H. Pan, Convergence rate for compressible Euler equations with damping and vacuum, Arch. Ration. Mech. Anal., 166 (2003), 359-376.doi: 10.1007/s00205-002-0234-5.

    [18]

    T. Li and S. Čanić, Critical thresholds in a quasilinear hyperbolic model of blood flow, Netw. Heterog. Media, 4 (2009), 527-536.doi: 10.3934/nhm.2009.4.527.

    [19]

    T. Li and K. Zhao, On a quasilinear hyperbolic system in blood flow modeling, Discrete & Continuous Dynamical Systems-B, 16 (2011), 333-344.

    [20]

    P.-L. Lions, B. Perthame and P. E. Souganidis, Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates, Comm. Pure Appl. Math., 49 (1996), 599-638.doi: 10.1002/(SICI)1097-0312(199606)49:6<599::AID-CPA2>3.0.CO;2-5.

    [21]

    P.-L. Lions, B. Perthame and E. Tadmor, Kinetic formulation of the isentropic gas dynamics and p-systems, Comm. Math. Phys., 163 (1994), 415-431.doi: 10.1007/BF02102014.

    [22]

    T.-P. Liu, Compressible flow with damping and vacuum, Japan J. Indust. Appl. Math, 13 (1996), 25-32.doi: 10.1007/BF03167296.

    [23]

    T.-P. Liu and T. Yang, Compressible Euler equations with vacuum, J. Differential Equations, 140 (1997), 223-237.doi: 10.1006/jdeq.1997.3281.

    [24]

    T.-P. Liu and T. Yang, Compressible flow with vacuum and physical singularity. Cathleen Morawetz: A great mathematician, Methods Appl. Anal., 7 (2000), 495-509.

    [25]

    P. Marcati and B. Rubino, Hyperbolic to parabolic relaxation theory for quasilinear first order systems, J. Differential Equations, 162 (2000), 359-399.

    [26]

    F. Murat, Compacité par compensation, Ann. Scoula Norm. Sup. Pisa Cl. Sci. (4), 5 (1978), 489-507.

    [27]

    M. Olufsen, C. Peskin, W. Kim, E. Pedersen, A. Nadim and J. Larsen, Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions, Annals of Biomedical Engineering, 28 (2000), 1281-1299.doi: 10.1114/1.1326031.

    [28]

    R. H. Pan and K. Zhao, Initial boundary value problem for compressible Euler equations with damping, Indiana University Mathematics Journal, 57 (2008), 2257-2282.doi: 10.1512/iumj.2008.57.3366.

    [29]

    A. J. Pullan, N. P. Smith and P. J. HunterAn anatomically based model of transient coronary blood flow in the heart, SIAM J. Appl. Math., 62 (2001/02), 990-1018. doi: 10.1137/S0036139999355199.

    [30]

    Y. C. Qiu and K. J. Zhang, On the relaxation limits of the hydrodynamic model for semiconductor devices, Math. Models and Methods in Appl. Sciences, 12 (2002), 333-363.doi: 10.1142/S0218202502001684.

    [31]

    J. L. Vazquez, "The Porous Medium Equation: Mathematical Theory,'' Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2007.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(106) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return