Advanced Search
Article Contents
Article Contents

A model for biological dynamic networks

Abstract Related Papers Cited by
  • The main aim of this paper is to introduce a mathematical framework to study stochastically evolving networks. More precisely, we provide a common language and suitable tools to study systematically the probability distribution of topological characteristics, which, in turn, play a key role in applications, especially for biological networks. The latter is possible via suitable definition of a random network process and new results for graph isomorphism, which, under suitable generic assumptions, can be stated in terms of the graph walk matrix and computed in polynomial time.
    Mathematics Subject Classification: Primary: 05C60, 92C42; Secondary: 05C80.


    \begin{equation} \\ \end{equation}
  • [1]

    U. Alon, "An Introduction to Systems Biology: Design Principles of Biological Circuits," Chapman & Hall/CRC Mathematical and Computational Biology Series, Chapman & Hall/CRC, Boca Raton, FL, 2007.


    A.-L. Barabási and R. Albert, Emergence of scaling in random networks, Science, 286 (1999), 509-512.doi: 10.1126/science.286.5439.509.


    A.-L. Barabási and R. E. Crandall, Linked: The new science of networks, Am. J. Phys., 71 (2003), 409-410.doi: 10.1119/1.1538577.


    B. Bollobás, C. Borgs, J. Chayes and O. Riordan, Directed scale-free graphs, in "Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms" (Baltimore, MD, 2003), 132-139, ACM, New York, 2003.


    M. Chaves and E. D. Sontag, State-estimation for chemical reaction networks of Feinberg-Horn-Jackson zero deficiency type, Europ. J. of Control, 8 (2002), 343-359.doi: 10.3166/ejc.8.343-359.


    C. Cooper and A. Frieze, A general model of web graphs, Random Struct. Alg., 22 (2003), 311-335.doi: 10.1002/rsa.10084.


    D. M. Cvetković, M. Doob and H. Sachs, "Spectra of Graphs: Theory and Applications," Third edition, Johann Ambrosius Barth, Heidelberg, 1995.


    D. Del Vecchio, A. J. Ninfa and E. D. Sontag, Modular cell biology: Retroactivity and insulation, Mol. Syst. Biology, 4 (2008), Article number 161.doi: 10.1038/msb4100204.


    R. Durrett, "Random Graph Dynamics," Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press, Cambridge, 2007.


    P. Erdős and A. Renyi, On random graphs, Publ. Math. Debrecen, 6 (1959), 290-297.


    M. Farina, R. Findeisen, E. Bullinger, S. Bittanti, F. Allgower and P. Wellstead, Results towards identifiability properties of biochemical reaction networks, in "Proceedings of the 45th IEEE Conference on Decision & Control," San Diego, CA, USA, December 13-15, (2006), 2104-2109.


    E. M. Hagos, Some results on graph spectra, Linear Algebra Appl., 356 (2002), 103-111.doi: 10.1016/S0024-3795(02)00324-5.


    S. Mangan and U. Alon, Structure and function of the feed-forward loop network motif, PNAS, 100 (2003), 11980-11985.doi: 10.1073/pnas.2133841100.


    M. E. J. Newman, The structure and functions of complex networks, SIAM Review, 45 (2003), 167-256.doi: 10.1137/S003614450342480.


    B. O. Palsson, "Systems Biology-Properties of Reconstructed Networks," Cambridge University Press, Cambridge, 2006.doi: 10.1017/CBO9780511790515.


    E. D. Sontag, Molecular systems biology and control, Europ. J. of Control, 11 (2005), 396-435.


    D. J. Watts and S. H. Strogatz, Collective dynamics of 'small-world' networks, Nature, 393 (1998), 440-442.doi: 10.1038/30918.

  • 加载中

Article Metrics

HTML views() PDF downloads(84) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint