\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Time-continuous production networks with random breakdowns

Abstract Related Papers Cited by
  • Our main objective is the modelling and simulation of complex production networks originally introduced in [15, 16] with random breakdowns of individual processors. Similar to [10], the breakdowns of processors are exponentially distributed. The resulting network model consists of coupled system of partial and ordinary differential equations with Markovian switching and its solution is a stochastic process. We show our model to fit into the framework of piecewise deterministic processes, which allows for a deterministic interpretation of dynamics between a multivariate two-state process. We develop an efficient algorithm with an emphasis on accurately tracing stochastic events. Numerical results are presented for three exemplary networks, including a comparison with the long-chain model proposed in [10].
    Mathematics Subject Classification: Primary: 90B15, 65C05; Secondary: 65Mxx.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    D. Armbruster, P. Degond and C. Ringhofer, A model for the dynamics of large queuing networks and supply chains, SIAM J. Appl. Math., 66 (2006), 896-920.doi: 10.1137/040604625.

    [2]

    M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks, Networks and Heterogenous Media, 1 (2006), 41-56.doi: 10.3934/nhm.2006.1.41.

    [3]

    M. K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations, Networks and Heterogenous Media, 1 (2006), 295-314.doi: 10.3934/nhm.2006.1.295.

    [4]

    S. Battiston, D. Delli Gatti, M. Gallegati, B. Greenwald and J. E. Stiglitz, Credit chains and bankruptcy propagation in production networks, J. Economic Dynamics and Control, 31 (2007), 2061-2084.doi: 10.1016/j.jedc.2007.01.004.

    [5]

    G. Bretti, C. D'Apice, R. Manzo and B. Piccoli, A continuum-discrete model for supply chains dynamics, Networks and Heterogeneous Media, 2 (2007), 661-694.doi: 10.3934/nhm.2007.2.661.

    [6]

    G. Coclite, M. Garavello and B. Piccoli, Traffic flow on road networks, SIAM J. Mathematical Analysis, 36 (2005), 1862-1886.doi: 10.1137/S0036141004402683.

    [7]

    C. D'Apice and R. Manzo, A fluid-dynamic model for supply chain, Networks and Heterogeneous Media, 1 (2006), 379-398.doi: 10.3934/nhm.2006.1.379.

    [8]

    M. H. A. Davis, Piecewise-deterministic Markov processes: A general class of non-diffusion stochastic models. With discussion, J. Royal Statistical Society Ser. B, 46 (1984), 353-388.

    [9]

    M. H. A. Davis, "Markov Models and Optimisation," Monograph on Statistics and Applied Probability, 49, Chapmand & Hall, London, 1993.

    [10]

    P. Degond and C. Ringhofer, Stochastic dynamics of long supply chains with random breakdowns, SIAM J. Appl. Math., 68 (2007), 59-79.doi: 10.1137/060674302.

    [11]

    A. Fügenschuh, M. Herty and A. Martin, Combinatorial and continuous models for the optimization of traffic flows on networks, SIAM J. Optimization, 16 (2006), 1155-1176.

    [12]

    C. W. Gardiner, "Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences,'' 3rd edition, Springer Series in Synergetics, 13, Springer-Verlag, Berlin, 2004.

    [13]

    D. T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Computational Phys., 22 (1976), 403-434.doi: 10.1016/0021-9991(76)90041-3.

    [14]

    D. T. Gillespie, Approximate accelerated stochastic simulation of chemically reacting systems, J. Chem. Phys., 115 (2001), 1716-1733.doi: 10.1063/1.1378322.

    [15]

    S. Göttlich, M. Herty and A. Klar, Network models for supply chains, Comm. Math. Sci., 3 (2005), 545-559.

    [16]

    S. Göttlich, M. Herty and A. Klar, Modelling and optimization of supply chains on complex networks, Comm. Math. Sci., 4 (2006), 315-330.

    [17]

    S. Göttlich, M. Herty and C. Ringhofer, Optimization of order policies in supply networks, European J. of Operational Research, 202 (2010), 456-465.doi: 10.1016/j.ejor.2009.05.028.

    [18]

    M. Gugat, M. Herty, A. Klar and G. Leugering, Optimal control for traffic flow networks, J. Optimization Theory and Application, 126 (2005), 589-616.doi: 10.1007/s10957-005-5499-z.

    [19]

    D. Helbing, "Verkehrsdynamik,'' Springer Verlag, New York, Berlin, Heidelberg, 1997.doi: 10.1007/978-3-642-59063-4.

    [20]

    D. Helbing, S. Lämmer and T. Seidel, Physics, stability and dynamics of supply chains, Physical Review E, 70 (2004), 066116-066120.doi: 10.1103/PhysRevE.70.066116.

    [21]

    M. Herty and A. Klar, Modeling, simulation and optimization of traffic flow networks, SIAM J. Scientific Computing, 25 (2003), 1066-1087.doi: 10.1137/S106482750241459X.

    [22]

    M. Herty, A. Klar and B. Piccoli, Existence of solutions for supply chain models based on partial differential equations, SIAM J. Mathematical Analysis, 39 (2007), 160-173.doi: 10.1137/060659478.

    [23]

    T. Kazangey and D. D. Sworder, Effective federal policies for regulating residential housing, Proc. Summer Computer Simulation Conf., (1971), 1120-1128.

    [24]

    F. P. Kelly, S. Zachary and I. Ziedins, eds., "Stochastic Networks: Theory and Apllications," Oxford University Press, 2002.

    [25]

    C. Kirchner, M. Herty, S. Göttlich and A. Klar, Optimal control for continuous supply network models, Networks and Heterogenous Media, 1 (2006), 675-688.doi: 10.3934/nhm.2006.1.675.

    [26]

    G. Leugering and E. Schmidt, On the modelling and stabilization of flows in networks of open channels, SIAM J. Control and Optimization, 41 (2002), 164-180.

    [27]

    X. Mao and C. Yuan, "Stochastic Differential Equations with Markovian Switching,'' Imperial College Press, London, 2006.

    [28]

    M. Mariton, "Jump Linear Systems in Automatic Control,'' Marcel Dekker, 1990.

    [29]

    A. Martin, M. Möller and S. Moritz, Mixed integer models for the stationary case of gas network optimization, Math. Programming, 105 (2006), 563-582.doi: 10.1007/s10107-005-0665-5.

    [30]

    M. Steinbach, On PDE solution in transient optimization of gas networks, J. Comput. Appl. Math., 203 (2007), 345-361.doi: 10.1016/j.cam.2006.04.018.

    [31]

    G. Steinebach, S. Rademacher, P. Rentrop and M. Schulz, Mechanisms of coupling in river flow simulation systems, J. Comput. Appl. Math., 168 (2004), 459-470.doi: 10.1016/j.cam.2003.12.008.

    [32]

    D. D. Sworder and V. G. Robinson, Feedback regulators for jump parameter systems with state and control depend transistion rates, IEEE Trans. Automat. Control, AC-18 (1973), 355-360.doi: 10.1109/TAC.1973.1100343.

    [33]

    A. S. Willsky and B. C. RogersStochastic stability research for complex power systems, DOE Contract, LIDS, MIT, Rep., ET-76-C-01-2295.

    [34]

    G. G. Yin and Q. Zhang, "Discrete-Time Markov Chains. Two-Time-Scale Methods and Applications,'' Applications of Mathematics (New York), 55, Stochastic Modelling and Applied Probability, Springer-Verlag, New York, 2005.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(226) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return