June  2012, 7(2): 219-241. doi: 10.3934/nhm.2012.7.219

From discrete to continuous Wardrop equilibria

1. 

Laboratoire Marin Mersenne, Université Paris I, 90 rue de Tolbiac, 75013, Paris, France

2. 

CEREMADE, UMR CNRS 7534, Université Paris-Dauphine, Pl. de Lattre de Tassigny, 75775 Paris Cedex 16

Received  November 2011 Revised  March 2012 Published  June 2012

The notion of Wardrop equilibrium in congested networks has been very popular in congested traffic modelling since its introduction in the early 50's, it is also well-known that Wardrop equilibria may be obtained by some convex minimization problem. In this paper, in the framework of $\Gamma$-convergence theory, we analyze what happens when a cartesian network becomes very dense. The continuous model we obtain this way is very similar to the continuous model of optimal transport with congestion of Carlier, Jimenez and Santambrogio [6] except that it keeps track of the anisotropy of the network.
Citation: Jean-Bernard Baillon, Guillaume Carlier. From discrete to continuous Wardrop equilibria. Networks and Heterogeneous Media, 2012, 7 (2) : 219-241. doi: 10.3934/nhm.2012.7.219
References:
[1]

J.-B. Baillon and R. Cominetti, Markovian traffic equilibrium, Math. Prog., 111 (2008), 33-56. doi: 10.1007/s10107-006-0076-2.

[2]

M. Beckmann, C. McGuire and C. Winsten, "Studies in Economics of Transportation," Yale University Press, New Haven, 1956.

[3]

F. Benmansour, G. Carlier, G. Peyré and F. Santambrogio, Numerical approximation of continuous traffic congestion equilibria, Netw. Heterog. Media, 4 (2009), 605-623.

[4]

A. Braides, "$\Gamma$-Convergence for Beginners," Oxford Lecture Series in Mathematics and its Applications, 22, Oxford University Press, Oxford, 2002.

[5]

L. Brasco, G. Carlier and F. Santambrogio, Congested traffic dynamics, weak flows and very degenerate elliptic equations, Journal de Mathématiques Pures et Appliquées (9), 93 (2010), 652-671.

[6]

G. Carlier, C. Jimenez and F. Santambrogio, Optimal transportation with traffic congestion and Wardrop equilibria, SIAM J. Control Optim., 47 (2008), 1330-1350. doi: 10.1137/060672832.

[7]

G. Dal Maso, "An Introduction to $\Gamma-$Convergence," Progress in Nonlinear Differential Equations and their Applications, 8, Birkhäuser Boston, Inc., Boston, MA, 1993.

[8]

C. Villani, "Topics in Optimal Transportation," Graduate Studies in Mathematics, 58, American Mathematical Society, Providence, RI, 2003.

[9]

J. G. Wardrop, Some theoretical aspects of road traffic research, Proc. Inst. Civ. Eng., 2 (1952), 325-378.

show all references

References:
[1]

J.-B. Baillon and R. Cominetti, Markovian traffic equilibrium, Math. Prog., 111 (2008), 33-56. doi: 10.1007/s10107-006-0076-2.

[2]

M. Beckmann, C. McGuire and C. Winsten, "Studies in Economics of Transportation," Yale University Press, New Haven, 1956.

[3]

F. Benmansour, G. Carlier, G. Peyré and F. Santambrogio, Numerical approximation of continuous traffic congestion equilibria, Netw. Heterog. Media, 4 (2009), 605-623.

[4]

A. Braides, "$\Gamma$-Convergence for Beginners," Oxford Lecture Series in Mathematics and its Applications, 22, Oxford University Press, Oxford, 2002.

[5]

L. Brasco, G. Carlier and F. Santambrogio, Congested traffic dynamics, weak flows and very degenerate elliptic equations, Journal de Mathématiques Pures et Appliquées (9), 93 (2010), 652-671.

[6]

G. Carlier, C. Jimenez and F. Santambrogio, Optimal transportation with traffic congestion and Wardrop equilibria, SIAM J. Control Optim., 47 (2008), 1330-1350. doi: 10.1137/060672832.

[7]

G. Dal Maso, "An Introduction to $\Gamma-$Convergence," Progress in Nonlinear Differential Equations and their Applications, 8, Birkhäuser Boston, Inc., Boston, MA, 1993.

[8]

C. Villani, "Topics in Optimal Transportation," Graduate Studies in Mathematics, 58, American Mathematical Society, Providence, RI, 2003.

[9]

J. G. Wardrop, Some theoretical aspects of road traffic research, Proc. Inst. Civ. Eng., 2 (1952), 325-378.

[1]

Fethallah Benmansour, Guillaume Carlier, Gabriel Peyré, Filippo Santambrogio. Numerical approximation of continuous traffic congestion equilibria. Networks and Heterogeneous Media, 2009, 4 (3) : 605-623. doi: 10.3934/nhm.2009.4.605

[2]

Emiliano Cristiani, Fabio S. Priuli. A destination-preserving model for simulating Wardrop equilibria in traffic flow on networks. Networks and Heterogeneous Media, 2015, 10 (4) : 857-876. doi: 10.3934/nhm.2015.10.857

[3]

Mark A. Peletier, Marco Veneroni. Stripe patterns and the Eikonal equation. Discrete and Continuous Dynamical Systems - S, 2012, 5 (1) : 183-189. doi: 10.3934/dcdss.2012.5.183

[4]

Jing Zhang, Jianquan Lu, Jinde Cao, Wei Huang, Jianhua Guo, Yun Wei. Traffic congestion pricing via network congestion game approach. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1553-1567. doi: 10.3934/dcdss.2020378

[5]

Chadi Nour. Construction of solutions to a global Eikonal equation. Conference Publications, 2007, 2007 (Special) : 779-783. doi: 10.3934/proc.2007.2007.779

[6]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[7]

Jaime Cruz-Sampedro. Schrödinger-like operators and the eikonal equation. Communications on Pure and Applied Analysis, 2014, 13 (2) : 495-510. doi: 10.3934/cpaa.2014.13.495

[8]

Jingmei Zhou, Xiangmo Zhao, Xin Cheng, Zhigang Xu. Visualization analysis of traffic congestion based on floating car data. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1423-1433. doi: 10.3934/dcdss.2015.8.1423

[9]

Julián Fernández Bonder, Analía Silva, Juan F. Spedaletti. Gamma convergence and asymptotic behavior for eigenvalues of nonlocal problems. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2125-2140. doi: 10.3934/dcds.2020355

[10]

Gianni Dal Maso. Ennio De Giorgi and $\mathbf\Gamma$-convergence. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1017-1021. doi: 10.3934/dcds.2011.31.1017

[11]

Alexander Mielke. Deriving amplitude equations via evolutionary $\Gamma$-convergence. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2679-2700. doi: 10.3934/dcds.2015.35.2679

[12]

Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations and Control Theory, 2016, 5 (3) : 449-461. doi: 10.3934/eect.2016013

[13]

Alberto Bressan, Ke Han. Existence of optima and equilibria for traffic flow on networks. Networks and Heterogeneous Media, 2013, 8 (3) : 627-648. doi: 10.3934/nhm.2013.8.627

[14]

Sylvia Serfaty. Gamma-convergence of gradient flows on Hilbert and metric spaces and applications. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1427-1451. doi: 10.3934/dcds.2011.31.1427

[15]

Antonio De Rosa, Domenico Angelo La Manna. A non local approximation of the Gaussian perimeter: Gamma convergence and Isoperimetric properties. Communications on Pure and Applied Analysis, 2021, 20 (5) : 2101-2116. doi: 10.3934/cpaa.2021059

[16]

Lorenza D'Elia. $ \Gamma $-convergence of quadratic functionals with non uniformly elliptic conductivity matrices. Networks and Heterogeneous Media, 2022, 17 (1) : 15-45. doi: 10.3934/nhm.2021022

[17]

Josu Doncel, Nicolas Gast, Bruno Gaujal. Discrete mean field games: Existence of equilibria and convergence. Journal of Dynamics and Games, 2019, 6 (3) : 221-239. doi: 10.3934/jdg.2019016

[18]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 3017-3025. doi: 10.3934/dcdss.2020465

[19]

Yutian Lei, Congming Li, Chao Ma. Decay estimation for positive solutions of a $\gamma$-Laplace equation. Discrete and Continuous Dynamical Systems, 2011, 30 (2) : 547-558. doi: 10.3934/dcds.2011.30.547

[20]

Alberto Bressan, Khai T. Nguyen. Optima and equilibria for traffic flow on networks with backward propagating queues. Networks and Heterogeneous Media, 2015, 10 (4) : 717-748. doi: 10.3934/nhm.2015.10.717

2021 Impact Factor: 1.41

Metrics

  • PDF downloads (87)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]