\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Explicit solutions of some linear-quadratic mean field games

Abstract Related Papers Cited by
  • We consider $N$-person differential games involving linear systems affected by white noise, running cost quadratic in the control and in the displacement of the state from a reference position, and with long-time-average integral cost functional. We solve an associated system of Hamilton-Jacobi-Bellman and Kolmogorov-Fokker-Planck equations and find explicit Nash equilibria in the form of linear feedbacks. Next we compute the limit as the number $N$ of players goes to infinity, assuming they are almost identical and with suitable scalings of the parameters. This provides a quadratic-Gaussian solution to a system of two differential equations of the kind introduced by Lasry and Lions in the theory of Mean Field Games [22]. Under a natural normalization the uniqueness of this solution depends on the sign of a single parameter. We also discuss some singular limits, such as vanishing noise, cheap control, vanishing discount. Finally, we compare the L-Q model with other Mean Field models of population distribution.
    Mathematics Subject Classification: Primary: 91A13, 49N70; Secondary: 93E20, 91A06, 49N10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    Y. Achdou, F. Camilli and I. Capuzzo-Dolcetta, Mean field games: Numerical methods for the planning problem, SIAM J. Control Opt., 50 (2012), 77-109.doi: 10.1137/100790069.

    [2]

    Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: Numerical methods, SIAM J. Numer. Anal., 48 (2010), 1136-1162.doi: 10.1137/090758477.

    [3]

    O. Alvarez and M. Bardi, Ergodic problems in differential games, in "Advances in Dynamic Game Theory," Ann. Internat. Soc. Dynam. Games, 9, Birkhäuser Boston, Boston, MA, (2007), 131-152.

    [4]

    O. Alvarez and M. Bardi, Ergodicity, stabilization, and singular perturbations for Bellman-Isaacs equations, Mem. Amer. Math. Soc., 204 (2010), vi+77 pp.

    [5]

    R. J. Aumann, Markets with a continuum of traders, Econometrica, 32 (1964), 39-50.doi: 10.2307/1913732.

    [6]

    M. Bardi and I. Capuzzo Dolcetta, "Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations," With appendices by Maurizio Falcone and Pierpaolo Soravia, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1997.

    [7]

    T. Başar and G. J. Olsder, "Dynamic Noncooperative Game Theory," Second edition, Academic Press, Ltd., London, 1995.

    [8]

    A. Bensoussan and J. Frehse, "Regularity Results for Nonlinear Elliptic Systems and Applications," Applied Mathematical Sciences, 151, Springer-Verlag, Berlin, 2002.

    [9]

    P. Cardaliaguet, "Notes on Mean Field Games," from P.-L. Lions' lectures at Collège de France, 2010.

    [10]

    J. C. Engwerda, "Linear Quadratic Dynamic Optimization and Differential Games," Wiley, Chichester, 2005.

    [11]

    W. H. Fleming and H. M. Soner, "Controlled Markov Processes and Viscosity Solutions," 2nd edition, Stochastic Modelling and Applied Probability, 25, Springer, New York, 2006.

    [12]

    D. A. Gomes, J. Mohr and R. R. Souza, Discrete time, finite state space mean field games, J. Math. Pures Appl. (9), 93 (2010), 308-328.

    [13]

    O. Guéant, "Mean Field Games and Applications to Economics," Ph.D. Thesis, Université Paris-Dauphine, 2009.

    [14]

    O. Guéant, A reference case for mean field games models, J. Math. Pures Appl. (9), 92 (2009), 276-294.

    [15]

    O. Guéant, J.-M. Lasry and P.-L. Lions, Mean field games and applications, in "Paris-Princeton Lectures on Mathematical Finance 2010" (eds. R. A. Carmona, et al.), Lecture Notes in Math., 2003, Springer, Berlin, (2011), 205-266.

    [16]

    R. Z. Has'minskiĭ, "Stochastic Stability of Differential Equations," Monographs and Textbooks on Mechanics of Solids and Fluids: Mechanics and Analysis, 7, Sijthoff & Noordhoff, Alphen aan den Rijn-Germantown, Md., 1980.

    [17]

    M. Huang, P. E. Caines and R. P. Malhamé, Individual and mass behaviour in large population stochastic wireless power control problems: Centralized and Nash equilibrium solutions, in "Proc. the 42nd IEEE Conference on Decision and Control," Maui, Hawaii, December, (2003), 98-103.

    [18]

    M. Huang, P. E. Caines and R. P. Malhamé, Large population stochastic dynamic games: Closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle, Commun. Inf. Syst., 6 (2006), 221-251.

    [19]

    M. Huang, P. E. Caines and R. P. Malhamé, Large-population cost-coupled LQG problems with nonuniform agents: Individual-mass behavior and decentralized $\epsilon$-Nash equilibria, IEEE Trans. Automat. Control, 52 (2007), 1560-1571.doi: 10.1109/TAC.2007.904450.

    [20]

    M. Huang, P. E. Caines and R. P. Malhamé, An invariance principle in large population stochastic dynamic games, J. Syst. Sci. Complex., 20 (2007), 162-172.doi: 10.1007/s11424-007-9015-4.

    [21]

    A. Lachapelle, J. Salomon and G. Turinici, Computation of mean field equilibria in economics, Math. Models Methods Appl. Sci., 20 (2010), 567-588.doi: 10.1142/S0218202510004349.

    [22]

    J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. I. Le cas stationnaire, C. R. Acad. Sci. Paris, 343 (2006), 619-625.doi: 10.1016/j.crma.2006.09.019.

    [23]

    J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal, C. R. Acad. Sci. Paris, 343 (2006), 679-684.doi: 10.1016/j.crma.2006.09.018.

    [24]

    J.-M. Lasry and P.-L. Lions, Mean field games, Jpn. J. Math., 2 (2007), 229-260.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(497) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return