-
Previous Article
A-priori estimates for stationary mean-field games
- NHM Home
- This Issue
-
Next Article
A semi-discrete approximation for a first order mean field game problem
Long time average of mean field games
1. | Ceremade, Université Paris-Dauphine, Place du Maréchal de Lattre de Tassigny, 75775 Paris cedex 16, France, France |
2. | 56 Rue d'Assas, 75006 Paris, France |
3. | Dipartimento di Matematica, Università di Roma Tor Vergata, Via della Ricerca Scientica 1, 00133 Roma, Italy |
References:
[1] |
Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: Numerical methods, SIAM J. Numer. Anal., 48 (2010), 1136-1162.
doi: 10.1137/090758477. |
[2] |
Y. Achdou, F. Camilli and I. Capuzzo-Dolcetta, Mean field games: Numerical methods for the planning problem, SIAM J. Control Opt., 50 (2012), 77-109.
doi: 10.1137/100790069. |
[3] |
M. Arisawa and P.-L. Lions, On ergodic stochastic control, Comm. Partial Differential Equations, 23 (1998), 2187-2217.
doi: 10.1080/03605309808821413. |
[4] |
G. Barles and P. E. Souganidis, Space-time periodic solutions and long-time behavior of solutions to quasi-linear parabolic equations, SIAM J. Math. Anal., 32 (2001), 1311-1323.
doi: 10.1137/S0036141000369344. |
[5] |
L. C. Evans, The perturbed test function method for viscosity solutions of nonlinear PDE, Proc. Roy. Soc. Edinburgh Sect. A, 111 (1989), 359-375.
doi: 10.1017/S0308210500018631. |
[6] |
D. A. Gomes, J. Mohr and R. Souza, Discrete time, finite state space mean field games, J. Math. Pures Appl. (9), 93 (2010), 308-328. |
[7] |
D. A. Gomes, G. E. Pires and H. Sanchez-Morgado, A-priori estimates for stationary mean-field games, preprint. |
[8] |
D. A. Gomes and H. Sanchez-Morgado, A stochastic Evans-Aronsson problem, preprint. |
[9] |
O. Guéant, Mean field games with quadratic hamiltonian: A constructive scheme, preprint. |
[10] |
O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type," Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence R.I., 1967. |
[11] |
J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. I. Le cas stationnaire, C. R. Math. Acad. Sci. Paris, 343 (2006), 619-625.
doi: 10.1016/j.crma.2006.09.019. |
[12] |
J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal, C. R. Math. Acad. Sci. Paris, 343 (2006), 679-684.
doi: 10.1016/j.crma.2006.09.018. |
[13] |
J.-M. Lasry and P.-L. Lions, Mean field games, Jpn. J. Math., 2 (2007), 229-260. |
[14] |
J.-M. Lasry, P.-L. Lions and O. Guéant, Application of mean field games to growth theory, preprint, 2008. |
[15] |
J.-M. Lasry and P.-L. Lions, Cours au Collège de France. Available from: http://www.college-de-france.fr. |
[16] |
A. Porretta, Existence results for nonlinear parabolic equations via strong convergence of truncations, Ann. Mat. Pura Appl. (4), 177 (1999), 143-172.
doi: 10.1007/BF02505907. |
show all references
References:
[1] |
Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: Numerical methods, SIAM J. Numer. Anal., 48 (2010), 1136-1162.
doi: 10.1137/090758477. |
[2] |
Y. Achdou, F. Camilli and I. Capuzzo-Dolcetta, Mean field games: Numerical methods for the planning problem, SIAM J. Control Opt., 50 (2012), 77-109.
doi: 10.1137/100790069. |
[3] |
M. Arisawa and P.-L. Lions, On ergodic stochastic control, Comm. Partial Differential Equations, 23 (1998), 2187-2217.
doi: 10.1080/03605309808821413. |
[4] |
G. Barles and P. E. Souganidis, Space-time periodic solutions and long-time behavior of solutions to quasi-linear parabolic equations, SIAM J. Math. Anal., 32 (2001), 1311-1323.
doi: 10.1137/S0036141000369344. |
[5] |
L. C. Evans, The perturbed test function method for viscosity solutions of nonlinear PDE, Proc. Roy. Soc. Edinburgh Sect. A, 111 (1989), 359-375.
doi: 10.1017/S0308210500018631. |
[6] |
D. A. Gomes, J. Mohr and R. Souza, Discrete time, finite state space mean field games, J. Math. Pures Appl. (9), 93 (2010), 308-328. |
[7] |
D. A. Gomes, G. E. Pires and H. Sanchez-Morgado, A-priori estimates for stationary mean-field games, preprint. |
[8] |
D. A. Gomes and H. Sanchez-Morgado, A stochastic Evans-Aronsson problem, preprint. |
[9] |
O. Guéant, Mean field games with quadratic hamiltonian: A constructive scheme, preprint. |
[10] |
O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type," Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence R.I., 1967. |
[11] |
J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. I. Le cas stationnaire, C. R. Math. Acad. Sci. Paris, 343 (2006), 619-625.
doi: 10.1016/j.crma.2006.09.019. |
[12] |
J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal, C. R. Math. Acad. Sci. Paris, 343 (2006), 679-684.
doi: 10.1016/j.crma.2006.09.018. |
[13] |
J.-M. Lasry and P.-L. Lions, Mean field games, Jpn. J. Math., 2 (2007), 229-260. |
[14] |
J.-M. Lasry, P.-L. Lions and O. Guéant, Application of mean field games to growth theory, preprint, 2008. |
[15] |
J.-M. Lasry and P.-L. Lions, Cours au Collège de France. Available from: http://www.college-de-france.fr. |
[16] |
A. Porretta, Existence results for nonlinear parabolic equations via strong convergence of truncations, Ann. Mat. Pura Appl. (4), 177 (1999), 143-172.
doi: 10.1007/BF02505907. |
[1] |
Fabio Camilli, Elisabetta Carlini, Claudio Marchi. A model problem for Mean Field Games on networks. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4173-4192. doi: 10.3934/dcds.2015.35.4173 |
[2] |
Juan Pablo Maldonado López. Discrete time mean field games: The short-stage limit. Journal of Dynamics and Games, 2015, 2 (1) : 89-101. doi: 10.3934/jdg.2015.2.89 |
[3] |
Ahmed Bonfoh, Cyril D. Enyi. Large time behavior of a conserved phase-field system. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1077-1105. doi: 10.3934/cpaa.2016.15.1077 |
[4] |
Diogo A. Gomes, Hiroyoshi Mitake, Kengo Terai. The selection problem for some first-order stationary Mean-field games. Networks and Heterogeneous Media, 2020, 15 (4) : 681-710. doi: 10.3934/nhm.2020019 |
[5] |
Josu Doncel, Nicolas Gast, Bruno Gaujal. Discrete mean field games: Existence of equilibria and convergence. Journal of Dynamics and Games, 2019, 6 (3) : 221-239. doi: 10.3934/jdg.2019016 |
[6] |
Yves Achdou, Manh-Khang Dao, Olivier Ley, Nicoletta Tchou. A class of infinite horizon mean field games on networks. Networks and Heterogeneous Media, 2019, 14 (3) : 537-566. doi: 10.3934/nhm.2019021 |
[7] |
Martin Burger, Marco Di Francesco, Peter A. Markowich, Marie-Therese Wolfram. Mean field games with nonlinear mobilities in pedestrian dynamics. Discrete and Continuous Dynamical Systems - B, 2014, 19 (5) : 1311-1333. doi: 10.3934/dcdsb.2014.19.1311 |
[8] |
Adriano Festa, Diogo Gomes, Francisco J. Silva, Daniela Tonon. Preface: Mean field games: New trends and applications. Journal of Dynamics and Games, 2021, 8 (4) : i-ii. doi: 10.3934/jdg.2021025 |
[9] |
Marco Cirant, Diogo A. Gomes, Edgard A. Pimentel, Héctor Sánchez-Morgado. On some singular mean-field games. Journal of Dynamics and Games, 2021, 8 (4) : 445-465. doi: 10.3934/jdg.2021006 |
[10] |
Lucio Boccardo, Luigi Orsina. The duality method for mean field games systems. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1343-1360. doi: 10.3934/cpaa.2022021 |
[11] |
Yoshikazu Giga, Hiroyoshi Mitake, Hung V. Tran. Remarks on large time behavior of level-set mean curvature flow equations with driving and source terms. Discrete and Continuous Dynamical Systems - B, 2020, 25 (10) : 3983-3999. doi: 10.3934/dcdsb.2019228 |
[12] |
Michael Herty, Lorenzo Pareschi, Giuseppe Visconti. Mean field models for large data–clustering problems. Networks and Heterogeneous Media, 2020, 15 (3) : 463-487. doi: 10.3934/nhm.2020027 |
[13] |
Martino Bardi. Explicit solutions of some linear-quadratic mean field games. Networks and Heterogeneous Media, 2012, 7 (2) : 243-261. doi: 10.3934/nhm.2012.7.243 |
[14] |
Diogo A. Gomes, Gabriel E. Pires, Héctor Sánchez-Morgado. A-priori estimates for stationary mean-field games. Networks and Heterogeneous Media, 2012, 7 (2) : 303-314. doi: 10.3934/nhm.2012.7.303 |
[15] |
Yves Achdou, Victor Perez. Iterative strategies for solving linearized discrete mean field games systems. Networks and Heterogeneous Media, 2012, 7 (2) : 197-217. doi: 10.3934/nhm.2012.7.197 |
[16] |
Matt Barker. From mean field games to the best reply strategy in a stochastic framework. Journal of Dynamics and Games, 2019, 6 (4) : 291-314. doi: 10.3934/jdg.2019020 |
[17] |
Olivier Guéant. New numerical methods for mean field games with quadratic costs. Networks and Heterogeneous Media, 2012, 7 (2) : 315-336. doi: 10.3934/nhm.2012.7.315 |
[18] |
Laura Aquilanti, Simone Cacace, Fabio Camilli, Raul De Maio. A Mean Field Games model for finite mixtures of Bernoulli and categorical distributions. Journal of Dynamics and Games, 2021, 8 (1) : 35-59. doi: 10.3934/jdg.2020033 |
[19] |
Siting Liu, Levon Nurbekyan. Splitting methods for a class of non-potential mean field games. Journal of Dynamics and Games, 2021, 8 (4) : 467-486. doi: 10.3934/jdg.2021014 |
[20] |
Tigran Bakaryan, Rita Ferreira, Diogo Gomes. A potential approach for planning mean-field games in one dimension. Communications on Pure and Applied Analysis, 2022, 21 (6) : 2147-2187. doi: 10.3934/cpaa.2022054 |
2021 Impact Factor: 1.41
Tools
Metrics
Other articles
by authors
[Back to Top]