-
Previous Article
Liquidity generated by heterogeneous beliefs and costly estimations
- NHM Home
- This Issue
-
Next Article
New numerical methods for mean field games with quadratic costs
A modest proposal for MFG with density constraints
1. | Laboratoire de Mathématiques d'Orsay, Faculté de Sciences, Université Paris-Sud, 91405 Orsay cedex, France |
References:
[1] |
L. Ambrosio, Minimizing movements, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5), 19 (1995), 191-246. |
[2] |
L. Ambrosio, N. Gigli and G. Savaré, "Gradient Flows in Metric Spaces and in the Space of Probability Measures," Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2005. |
[3] |
J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, Numer. Math., 84 (2000), 375-393.
doi: 10.1007/s002110050002. |
[4] |
G. Buttazzo, C. Jimenez and E. Oudet, An optimization problem for mass transportation with congested dynamics, SIAM J. Control Optim., 48 (2009), 1961-1976.
doi: 10.1137/07070543X. |
[5] |
G. Dal Maso, "An Introduction to $\Gamma-$Convergence," Progress in Nonlinear Differential Equations and their Applications, 8, Birkhäuser Boston, Inc., Boston, MA, 1993. |
[6] |
E. De Giorgi, New problems on minimizing movements, in "Boundary Value Problems for PDE and Applications" (eds. C. Baiocchi and J. L. Lions), RMA Res. Notes Appl. Math., 29, Masson, Paris, (1993), 81-98. |
[7] |
R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29 (1998), 1-17.
doi: 10.1137/S0036141096303359. |
[8] |
J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal, C. R. Math. Acad. Sci. Paris, 343 (2006), 679-684.
doi: 10.1016/j.crma.2006.09.018. |
[9] |
J.-M. Lasry and P.-L. Lions, Mean-field games, Japan. J. Math, 2 (2007), 229-260. |
[10] |
B. Maury, A. Roudneff-Chupin and F. Santambrogio, A macroscopic crowd motion model of gradient flow type, Mat. Mod. Meth. Appl. Sci., 20 (2010), 1787-1821.
doi: 10.1142/S0218202510004799. |
[11] |
B. Maury, A. Roudneff-Chupin, F. Santambrogio and J. Venel, Handling congestion in crowd motion modeling, Net. Het. Media, 6 (2011), 485-519. |
[12] |
B. Maury and J. Venel, "Handling of Contacts in Crowd Motion Simulations," Traffic and Granular Flow, Springer, 2007. |
[13] |
R. J. McCann, A convexity principle for interacting gases, Adv. Math., 128 (1997), 153-179.
doi: 10.1006/aima.1997.1634. |
[14] |
F. Otto, The geometry of dissipative evolution equations: The porous medium equation, Comm. Partial Differential Equations, 26 (2001), 101-174.
doi: 10.1081/PDE-100002243. |
[15] |
S. Serfaty, Gamma-convergence of gradient flows on Hilbert and metric spaces and applications, Disc. Cont. Dyn. Systems, 31 (2011), 1427-1451.
doi: 10.3934/dcds.2011.31.1427. |
[16] |
C. Villani, "Topics in Optimal Transportation," Grad. Stud. Math., 58, AMS, Providence, RI, 2003. |
[17] |
C. Villani, "Optimal Transport. Old and New," Grundlehren der Mathematischen Wissenschaften, 338, Springer-Verlag, Berlin, 2009. |
show all references
References:
[1] |
L. Ambrosio, Minimizing movements, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5), 19 (1995), 191-246. |
[2] |
L. Ambrosio, N. Gigli and G. Savaré, "Gradient Flows in Metric Spaces and in the Space of Probability Measures," Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2005. |
[3] |
J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, Numer. Math., 84 (2000), 375-393.
doi: 10.1007/s002110050002. |
[4] |
G. Buttazzo, C. Jimenez and E. Oudet, An optimization problem for mass transportation with congested dynamics, SIAM J. Control Optim., 48 (2009), 1961-1976.
doi: 10.1137/07070543X. |
[5] |
G. Dal Maso, "An Introduction to $\Gamma-$Convergence," Progress in Nonlinear Differential Equations and their Applications, 8, Birkhäuser Boston, Inc., Boston, MA, 1993. |
[6] |
E. De Giorgi, New problems on minimizing movements, in "Boundary Value Problems for PDE and Applications" (eds. C. Baiocchi and J. L. Lions), RMA Res. Notes Appl. Math., 29, Masson, Paris, (1993), 81-98. |
[7] |
R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29 (1998), 1-17.
doi: 10.1137/S0036141096303359. |
[8] |
J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal, C. R. Math. Acad. Sci. Paris, 343 (2006), 679-684.
doi: 10.1016/j.crma.2006.09.018. |
[9] |
J.-M. Lasry and P.-L. Lions, Mean-field games, Japan. J. Math, 2 (2007), 229-260. |
[10] |
B. Maury, A. Roudneff-Chupin and F. Santambrogio, A macroscopic crowd motion model of gradient flow type, Mat. Mod. Meth. Appl. Sci., 20 (2010), 1787-1821.
doi: 10.1142/S0218202510004799. |
[11] |
B. Maury, A. Roudneff-Chupin, F. Santambrogio and J. Venel, Handling congestion in crowd motion modeling, Net. Het. Media, 6 (2011), 485-519. |
[12] |
B. Maury and J. Venel, "Handling of Contacts in Crowd Motion Simulations," Traffic and Granular Flow, Springer, 2007. |
[13] |
R. J. McCann, A convexity principle for interacting gases, Adv. Math., 128 (1997), 153-179.
doi: 10.1006/aima.1997.1634. |
[14] |
F. Otto, The geometry of dissipative evolution equations: The porous medium equation, Comm. Partial Differential Equations, 26 (2001), 101-174.
doi: 10.1081/PDE-100002243. |
[15] |
S. Serfaty, Gamma-convergence of gradient flows on Hilbert and metric spaces and applications, Disc. Cont. Dyn. Systems, 31 (2011), 1427-1451.
doi: 10.3934/dcds.2011.31.1427. |
[16] |
C. Villani, "Topics in Optimal Transportation," Grad. Stud. Math., 58, AMS, Providence, RI, 2003. |
[17] |
C. Villani, "Optimal Transport. Old and New," Grundlehren der Mathematischen Wissenschaften, 338, Springer-Verlag, Berlin, 2009. |
[1] |
Bertrand Maury, Aude Roudneff-Chupin, Filippo Santambrogio, Juliette Venel. Handling congestion in crowd motion modeling. Networks and Heterogeneous Media, 2011, 6 (3) : 485-519. doi: 10.3934/nhm.2011.6.485 |
[2] |
Tan H. Cao, Boris S. Mordukhovich. Optimality conditions for a controlled sweeping process with applications to the crowd motion model. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 267-306. doi: 10.3934/dcdsb.2017014 |
[3] |
Martin Burger, Peter Alexander Markowich, Jan-Frederik Pietschmann. Continuous limit of a crowd motion and herding model: Analysis and numerical simulations. Kinetic and Related Models, 2011, 4 (4) : 1025-1047. doi: 10.3934/krm.2011.4.1025 |
[4] |
Alessandro Bertuzzi, Antonio Fasano, Alberto Gandolfi, Carmela Sinisgalli. Interstitial Pressure And Fluid Motion In Tumor Cords. Mathematical Biosciences & Engineering, 2005, 2 (3) : 445-460. doi: 10.3934/mbe.2005.2.445 |
[5] |
Maria Laura Delle Monache, Paola Goatin. A front tracking method for a strongly coupled PDE-ODE system with moving density constraints in traffic flow. Discrete and Continuous Dynamical Systems - S, 2014, 7 (3) : 435-447. doi: 10.3934/dcdss.2014.7.435 |
[6] |
Tan H. Cao, Boris S. Mordukhovich. Applications of optimal control of a nonconvex sweeping process to optimization of the planar crowd motion model. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4191-4216. doi: 10.3934/dcdsb.2019078 |
[7] |
Félicien BOURDIN. Splitting scheme for a macroscopic crowd motion model with congestion for a two-typed population. Networks and Heterogeneous Media, 2022 doi: 10.3934/nhm.2022026 |
[8] |
Aneta Wróblewska-Kamińska. Local pressure methods in Orlicz spaces for the motion of rigid bodies in a non-Newtonian fluid with general growth conditions. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1417-1425. doi: 10.3934/dcdss.2013.6.1417 |
[9] |
Kyungwoo Song, Yuxi Zheng. Semi-hyperbolic patches of solutions of the pressure gradient system. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1365-1380. doi: 10.3934/dcds.2009.24.1365 |
[10] |
Hanchun Yang, Meimei Zhang, Qin Wang. Global solutions of shock reflection problem for the pressure gradient system. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3387-3428. doi: 10.3934/cpaa.2020150 |
[11] |
Gui-Qiang G. Chen, Qin Wang, Shengguo Zhu. Global solutions of a two-dimensional Riemann problem for the pressure gradient system. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2475-2503. doi: 10.3934/cpaa.2021014 |
[12] |
Rhouma Mlayeh. Stability analysis of pressure and penetration rate in rotary drilling system. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1547-1560. doi: 10.3934/dcdss.2022007 |
[13] |
Baoquan Yuan, Xiaokui Zhao. Blowup of smooth solutions to the full compressible MHD system with compact density. Kinetic and Related Models, 2014, 7 (1) : 195-203. doi: 10.3934/krm.2014.7.195 |
[14] |
Yuanshi Wang, Donald L. DeAngelis. A mutualism-parasitism system modeling host and parasite with mutualism at low density. Mathematical Biosciences & Engineering, 2012, 9 (2) : 431-444. doi: 10.3934/mbe.2012.9.431 |
[15] |
Roger Lui, Hirokazu Ninomiya. Traveling wave solutions for a bacteria system with density-suppressed motility. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 931-940. doi: 10.3934/dcdsb.2018213 |
[16] |
Banavara N. Shashikanth. Kirchhoff's equations of motion via a constrained Zakharov system. Journal of Geometric Mechanics, 2016, 8 (4) : 461-485. doi: 10.3934/jgm.2016016 |
[17] |
Yinzheng Sun, Qin Wang, Kyungwoo Song. Subsonic solutions to a shock diffraction problem by a convex cornered wedge for the pressure gradient system. Communications on Pure and Applied Analysis, 2020, 19 (10) : 4899-4920. doi: 10.3934/cpaa.2020217 |
[18] |
Peng Zhang, Jiequan Li, Tong Zhang. On two-dimensional Riemann problem for pressure-gradient equations of the Euler system. Discrete and Continuous Dynamical Systems, 1998, 4 (4) : 609-634. doi: 10.3934/dcds.1998.4.609 |
[19] |
Yu Liu, Ting Zhang. On weak (measure-valued)-strong uniqueness for compressible MHD system with non-monotone pressure law. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2021307 |
[20] |
Boris P. Andreianov, Carlotta Donadello, Ulrich Razafison, Julien Y. Rolland, Massimiliano D. Rosini. Solutions of the Aw-Rascle-Zhang system with point constraints. Networks and Heterogeneous Media, 2016, 11 (1) : 29-47. doi: 10.3934/nhm.2016.11.29 |
2021 Impact Factor: 1.41
Tools
Metrics
Other articles
by authors
[Back to Top]