Citation: |
[1] |
Yves Achdou, Fabio Camilli and Italo Capuzzo-Dolcetta, Mean field games: Numerical methods for the planning problem, SIAM Journal on Control and Optimization, 50 (2012), 77-109.doi: 10.1137/100790069. |
[2] |
Yves Achdou and Italo Capuzzo-Dolcetta, Mean field games: Numerical methods, SIAM J. Numer. Anal., 48 (2010), 1136-1162.doi: 10.1137/090758477. |
[3] |
Marco Avellaneda and Sasha Stoikov, High-frequency trading in a limit order book, Quantitative Finance, 8 (2008), 217-224. |
[4] |
Agnes Bialecki, Eleonore Haguet and Gabriel Turinici, Trading volume as equilibrium induced by heterogeneous uncertain estimations of a continuum of agents, in preparation, 2012. |
[5] |
Michael Gallmeyer and Burton Hollifield, An examination of heterogeneous beliefs with a short-sale constraint in a dynamic economy, Review of Finance, 12 (2008), 323-364.doi: 10.1093/rof/rfm036. |
[6] |
Diogo A. Gomes, Joana Mohr and Rafael Rigao Souza, Discrete time, finite state space mean field games, Journal de Mathématiques Pures et Appliquées (9), 93 (2010), 308-328. |
[7] |
Olivier Guéant, A reference case for mean field games models, Journal de Mathématiques Pures et Appliquées (9), 92 (2009), 276-294. |
[8] |
Roger Guesnerie, An exploration of the eductive justifications of the rational-expectations hypothesis, The American Economic Review, 82 (1992). |
[9] |
Alexandra Hachmeister, "Informed Traders as Liquidity Providers," DUV, 2007. |
[10] |
E. Jouini and C. Napp, Aggregation of heterogeneous beliefs, Journal of Mathematical Economics, 42 (2006), 752-770.doi: 10.1016/j.jmateco.2006.02.001. |
[11] |
Elyès Jouini and Clotilde Napp, Heterogeneous beliefs and asset pricing in discrete time: An analysis of pessimism and doubt, Journal of Economic Dynamics and Control, 30 (2006), 1233-1260.doi: 10.1016/j.jedc.2005.05.008. |
[12] |
Aime Lachapelle, Julien Salomon and Gabriel Turinici, Computation of mean field equilibria in economics, Math. Models Methods Appl. Sci., 20 (2010), 567-588.doi: 10.1142/S0218202510004349. |
[13] |
Aimé Lachapelle and Marie-Therese Wolfram, On a mean field game approach modeling congestion and aversion in pedestrian crowds, Transportation Research Part B: Methodological, 45 (2011), 1572-1589.doi: 10.1016/j.trb.2011.07.011. |
[14] |
Jean-Michel Lasry and Pierre-Louis Lions, Mean field games. I. The stationary case, Comptes Rendus Mathematique Acad. Sci. Paris, 343 (2006), 619-625.doi: 10.1016/j.crma.2006.09.019. |
[15] |
Jean-Michel Lasry and Pierre-Louis Lions, Mean field games. II. Finite horizon and optimal control, Comptes Rendus Mathematique Acad. Sci. Paris, 343 (2006), 679-684.doi: 10.1016/j.crma.2006.09.018. |
[16] |
Jean-Michel Lasry and Pierre-Louis Lions, Mean field games, Japanese Journal of Mathematics, 2 (2007), 229-260. |
[17] |
Pierre-Louis Lions, Mean field games course at Collège de France, video files. Available from: http://www.college-de-france.fr/. |
[18] |
Maureen O'Hara, "Market Microstructure Theory," Blackwell Business, March, 1997. |
[19] |
Emilio Osambela, Asset pricing with heterogeneous beliefs and endogenous liquidity constraints, SSRN eLibrary, 2010. |
[20] |
Min Shen and Gabriel Turinici, "Mean Field Game Theory Applied in Financial Market Liquidity," internal report, CEREMADE, Université Paris Dauphine, 2011. |