-
Previous Article
Effects of topology on robustness in ecological bipartite networks
- NHM Home
- This Issue
-
Next Article
Bipartite networks provide new insights on international trade markets
Structural properties of urban bus and subway networks of Madrid
1. | Departamento de Ingeniería Telemática, Escuela Politécnica Superior, Universidad Carlos III de Madrid, Ave. Universidad, 30, Edif. Torres Quevedo, Leganés, 28911 Madrid, Spain |
2. | Grupo de Sistemas Complejos and Departamento de Fisica y Mecanica, E.T.S.I. Agrónomos, Universidad Politécnica de Madrid, 28040 Madrid |
References:
[1] |
J. P. Cardenas, et al., The effect of the complex topology on the robustness of spanish SDH network, in "Fifth International Conference on Networking and Services," IEEE Xplore, (2007), 2289-2301. |
[2] |
R. Criado, et al., Efficiency, vulnerability and cost: An overview with applications to subway networks worldwide, Int. Journal of Bif. And Chaos, 17 (2007), 2289-2301.
doi: 10.1142/S0218127407018397. |
[3] |
R. Criado, et al., Understanding complex networks through the study of their critical nodes: Efficiency, vulnerability and dynamical importance, in "International Conference on Modelling and Computation on Complex Networks and Related Topics Net-Works 2007," (2007), 23-30. |
[4] |
B. Fields, et al, Analysis and exploitation of musician social networks for recommendation and discovery, IEEE Transactions on Multimedia, 13 (2011), 674-686.
doi: 10.1109/TMM.2011.2111365. |
[5] |
O. Kwona and W. S. Jung, Intercity express bus flow in Korea and its network analysis, Physica A: Statistical Mechanics and its Applications, 391 (2012), 4261-4265.
doi: 10.1016/j.physa.2012.03.031. |
[6] |
T. Majima, M. Katuhara and K. Takadama, Analysis on transport networks of railway, subway and waterbus in Japan, Emergent Intelligence of Networked Agents Studies in Computational Intelligence, 56 (2007), 99-113.
doi: 10.1007/978-3-540-71075-2_8. |
[7] |
M. E. J. Newman, The structure and function of complex networks, SIAM Review, 45 (2003), 167-256.
doi: 10.1137/S003614450342480. |
[8] |
M. E. J. Newman, Modularity and community structure in networks, Proc. Natl. Acad. Sci. USA, 103 (2006), 8577-8582.
doi: 10.1073/pnas.0601602103. |
[9] |
P. Pons and M. Latapy, Computing communities in large networks using random walks, J. Graph Algorithms Appl., 10 (2006), 191-218.
doi: 10.7155/jgaa.00124. |
[10] |
D. Watts and S. Strogatz, Collective dynamics of 'small-world' networks, Nature, 393 (1998), 440-442.
doi: 10.1038/30918. |
show all references
References:
[1] |
J. P. Cardenas, et al., The effect of the complex topology on the robustness of spanish SDH network, in "Fifth International Conference on Networking and Services," IEEE Xplore, (2007), 2289-2301. |
[2] |
R. Criado, et al., Efficiency, vulnerability and cost: An overview with applications to subway networks worldwide, Int. Journal of Bif. And Chaos, 17 (2007), 2289-2301.
doi: 10.1142/S0218127407018397. |
[3] |
R. Criado, et al., Understanding complex networks through the study of their critical nodes: Efficiency, vulnerability and dynamical importance, in "International Conference on Modelling and Computation on Complex Networks and Related Topics Net-Works 2007," (2007), 23-30. |
[4] |
B. Fields, et al, Analysis and exploitation of musician social networks for recommendation and discovery, IEEE Transactions on Multimedia, 13 (2011), 674-686.
doi: 10.1109/TMM.2011.2111365. |
[5] |
O. Kwona and W. S. Jung, Intercity express bus flow in Korea and its network analysis, Physica A: Statistical Mechanics and its Applications, 391 (2012), 4261-4265.
doi: 10.1016/j.physa.2012.03.031. |
[6] |
T. Majima, M. Katuhara and K. Takadama, Analysis on transport networks of railway, subway and waterbus in Japan, Emergent Intelligence of Networked Agents Studies in Computational Intelligence, 56 (2007), 99-113.
doi: 10.1007/978-3-540-71075-2_8. |
[7] |
M. E. J. Newman, The structure and function of complex networks, SIAM Review, 45 (2003), 167-256.
doi: 10.1137/S003614450342480. |
[8] |
M. E. J. Newman, Modularity and community structure in networks, Proc. Natl. Acad. Sci. USA, 103 (2006), 8577-8582.
doi: 10.1073/pnas.0601602103. |
[9] |
P. Pons and M. Latapy, Computing communities in large networks using random walks, J. Graph Algorithms Appl., 10 (2006), 191-218.
doi: 10.7155/jgaa.00124. |
[10] |
D. Watts and S. Strogatz, Collective dynamics of 'small-world' networks, Nature, 393 (1998), 440-442.
doi: 10.1038/30918. |
[1] |
Liu Hui, Lin Zhi, Waqas Ahmad. Network(graph) data research in the coordinate system. Mathematical Foundations of Computing, 2018, 1 (1) : 1-10. doi: 10.3934/mfc.2018001 |
[2] |
Deena Schmidt, Janet Best, Mark S. Blumberg. Random graph and stochastic process contributions to network dynamics. Conference Publications, 2011, 2011 (Special) : 1279-1288. doi: 10.3934/proc.2011.2011.1279 |
[3] |
Georgy P. Karev. Dynamics of heterogeneous populations and communities and evolution of distributions. Conference Publications, 2005, 2005 (Special) : 487-496. doi: 10.3934/proc.2005.2005.487 |
[4] |
Robert Stephen Cantrell, King-Yeung Lam. Competitive exclusion in phytoplankton communities in a eutrophic water column. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 1783-1795. doi: 10.3934/dcdsb.2020361 |
[5] |
Jelena Grbić, Jie Wu, Kelin Xia, Guo-Wei Wei. Aspects of topological approaches for data science. Foundations of Data Science, 2022, 4 (2) : 165-216. doi: 10.3934/fods.2022002 |
[6] |
A. Marigo. Robustness of square networks. Networks and Heterogeneous Media, 2009, 4 (3) : 537-575. doi: 10.3934/nhm.2009.4.537 |
[7] |
Daniel Ryan, Robert Stephen Cantrell. Avoidance behavior in intraguild predation communities: A cross-diffusion model. Discrete and Continuous Dynamical Systems, 2015, 35 (4) : 1641-1663. doi: 10.3934/dcds.2015.35.1641 |
[8] |
Emiliano Alvarez, Juan Gabriel Brida, Lucía Rosich, Erick Limas. Analysis of communities of countries with similar dynamics of the COVID-19 pandemic evolution. Journal of Dynamics and Games, 2022, 9 (1) : 75-96. doi: 10.3934/jdg.2021026 |
[9] |
Luis Barreira, Claudia Valls. Noninvertible cocycles: Robustness of exponential dichotomies. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4111-4131. doi: 10.3934/dcds.2012.32.4111 |
[10] |
Eric Babson and Dmitry N. Kozlov. Topological obstructions to graph colorings. Electronic Research Announcements, 2003, 9: 61-68. |
[11] |
Oded Schramm. Hyperfinite graph limits. Electronic Research Announcements, 2008, 15: 17-23. doi: 10.3934/era.2008.15.17 |
[12] |
J. William Hoffman. Remarks on the zeta function of a graph. Conference Publications, 2003, 2003 (Special) : 413-422. doi: 10.3934/proc.2003.2003.413 |
[13] |
John Kieffer and En-hui Yang. Ergodic behavior of graph entropy. Electronic Research Announcements, 1997, 3: 11-16. |
[14] |
Roberto De Leo, James A. Yorke. The graph of the logistic map is a tower. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5243-5269. doi: 10.3934/dcds.2021075 |
[15] |
Desheng Li, P.E. Kloeden. Robustness of asymptotic stability to small time delays. Discrete and Continuous Dynamical Systems, 2005, 13 (4) : 1007-1034. doi: 10.3934/dcds.2005.13.1007 |
[16] |
Cristopher Hermosilla. Stratified discontinuous differential equations and sufficient conditions for robustness. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4415-4437. doi: 10.3934/dcds.2015.35.4415 |
[17] |
Juan Manuel Pastor, Silvia Santamaría, Marcos Méndez, Javier Galeano. Effects of topology on robustness in ecological bipartite networks. Networks and Heterogeneous Media, 2012, 7 (3) : 429-440. doi: 10.3934/nhm.2012.7.429 |
[18] |
Florian Dumpert. Quantitative robustness of localized support vector machines. Communications on Pure and Applied Analysis, 2020, 19 (8) : 3947-3956. doi: 10.3934/cpaa.2020174 |
[19] |
Mingxing Zhou, Jing Liu, Shuai Wang, Shan He. A comparative study of robustness measures for cancer signaling networks. Big Data & Information Analytics, 2017, 2 (1) : 87-96. doi: 10.3934/bdia.2017011 |
[20] |
Rubén Caballero, Alexandre N. Carvalho, Pedro Marín-Rubio, José Valero. Robustness of dynamically gradient multivalued dynamical systems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1049-1077. doi: 10.3934/dcdsb.2019006 |
2020 Impact Factor: 1.213
Tools
Metrics
Other articles
by authors
[Back to Top]