Citation: |
[1] |
J. Banasiak, M. Lachowicz and M. Moszyński, Semigroups for generalized birth-and-death equations in $ \l^p$ spaces, Semigroup Forum, 73 (2006), 175-193.doi: 10.1007/s00233-006-0621-x. |
[2] |
F. Ball and P. Neal, Network epidemic models with two levels of mixing, Math. Biosci., 212 (2008), 69-87.doi: 10.1016/j.mbs.2008.01.001. |
[3] |
A. Bátkai, P. Csomós and G. Nickel, Operator splittings and spatial approximations for evolution equations, J. Evol. Equ., 9 (2009), 613-636.doi: 10.1007/s00028-009-0026-6. |
[4] |
A. Bobrowski, "Functional Analysis for Probability and Stochastic Processes. An Introduction," Cambridge, 2005. |
[5] |
C. Chicone, "Ordinary Differential Equations with Applications," Second edition, Texts in Applied Mathematics, 34, Springer, New York, 2006. |
[6] |
R. W. R. Darling and J. R. Norris, Differential equation approximations for Markov chains, Probab. Surv., 5 (2008), 37-79.doi: 10.1214/07-PS121. |
[7] |
K.-J. Engel and R. Nagel, "One-Parameter Semigroups for Linear Evolution Equations," Graduate Texts in Math., 194, Springer-Verlag, New York, 2000. |
[8] |
S. N. Ethier and T. G. Kurtz, "Markov Processes: Characterization and Convergence," John Wiley & Sons Ltd, USA, 2005. |
[9] |
G. Grimmett and D. Stirzaker, "Probability and Random Processes," Third edition, Oxford University Press, New York, 2001. |
[10] |
T. Gross and B. Blasius, Adaptive coevolutionary networks: A review, J. Roy. Soc. Interface, 5 (2008), 259-271.doi: 10.1098/rsif.2007.1229. |
[11] |
T. House and M. J. Keeling, Insights from unifying modern approximations to infections on networks, J. R. Soc. Interface, 8 (2011), 67-73.doi: 10.1098/rsif.2010.0179. |
[12] |
T. Kato, On the semi-groups generated by Kolmogoroff's differential equations, J. Math. Soc. Japan, 6 (1954), 1-15.doi: 10.2969/jmsj/00610001. |
[13] |
I. Z. Kiss, L. Berthouze, T. J. Taylor and P. L. Simon, Modelling approaches for simple dynamic networks and applications to disease transmission models, Proc. Roy. Soc. A, to appear. |
[14] |
T. G. Kurtz, Extensions of Trotter's operator semigroup approximation theorems, J. Functional Analysis, 3 (1969), 354-375.doi: 10.1016/0022-1236(69)90031-7. |
[15] |
T. G. Kurtz, Solutions of ordinary differential equations as limits of pure jump Markov processes, J. Appl. Prob., 7 (1970), 49-58.doi: 10.2307/3212147. |
[16] |
J. Lindquist, J. Ma, P. van den Driessche and F. H. Willeboordse, Effective degree network disease models, J. Math. Biol., 62 (2011), 143-164.doi: 10.1007/s00285-010-0331-2. |
[17] |
R. McVinish and P. K. Pollett, The deterministic limit of heterogeneous density dependent Markov chains, Ann. Appl., Prob., submitted. |
[18] |
P. L. Simon and I. Z. Kiss, From exact stochastic to mean-field ODE models: A case study of three different approaches to prove convergence results, to appear. |
[19] |
P. L. Simon, M. Taylor and I. Z. Kiss, Exact epidemic models on graphs using graph-automorphism driven lumping, J. Math. Biol., 62 (2011), 479-508.doi: 10.1007/s00285-010-0344-x. |