Citation: |
[1] |
G. Auchmuty, Steklov eigenproblems and the representation of solutions of elliptic boundary value problems, Numerical Functional Analysis and Optimization, 25 (2004), 321-348.doi: 10.1081/NFA-120039655. |
[2] |
S. Avdonin and P. Kurasov, Inverse problems for quantum trees, Inverse Probl. Imaging, 2 (2008), 1-21.doi: 10.3934/ipi.2008.2.1. |
[3] |
M. Belishev, Boundary spectral inverse problem on a class of graphs (trees) by the BC method, Inverse Problems, 20 (2004), 647-672.doi: 10.1088/0266-5611/20/3/002. |
[4] |
M. Brown and R. Weikard, A Borg-Levinson theorem for trees, Proc. R. Soc. London Ser. A, 461 (2005), 3231-3243.doi: 10.1098/rspa.2005.1513. |
[5] |
A. Calderon, On an inverse boundary value problem, Computational and Applied Mathematics, 25 (2006), 133-138.doi: 10.1590/S0101-82052006000200002. |
[6] |
R. Carlson, Linear network models related to blood flow, in "Quantum Graphs and their Applications," Contemp. Math, 415 (2006), 65-80.doi: 10.1090/conm/415/07860. |
[7] |
R. Carlson, Boundary value problems for infinite metric graphs, in Analysis on Graphs and Its Applications, PSPM, 77 (2008), 355-368. |
[8] |
R. Carlson, After the explosion: Dirichlet forms and boundary problems for infinite graphs, preprint, arXiv:1109.3137. |
[9] |
E. Curtis, D. Ingerman and J. Morrow, Circular planar graphs and resistor networks, Linear Algebra Appl., 283 (1998), 115-150.doi: 10.1016/S0024-3795(98)10087-3. |
[10] |
P. Cartier, Fonctions harmoniques sur un arbre, Sympos. Math, 9 (1972), 203-270. |
[11] |
F. Chung, "Spectral Graph Theory,'' American Mathematical Society, Providence, 1997. |
[12] |
J. Cohen, F. Colonna and D. Singman, Distributions and measures on the boundary of a tree, Journal of Mathematical Analysis and Applications, 293 (2004), 89-107.doi: 10.1016/j.jmaa.2003.12.015. |
[13] |
Y. Colin de Verdiere, "Spectres de Graphes,'' Societe Mathematique de France, 1998. |
[14] |
Y. Colin de Verdiere, N. Torki-Hamza and F. Truc, Essential self-adjointness for combinatorial Schrödinger operators II-metrically noncomplete graphs, Mathematical Physics, Analysis, and Geometry, 14 (2011), 21-38. |
[15] |
P. Doyle and J. L. Snell, "Random Walks and Electric Networks,'' MAA, Washington, D. C., 1984. |
[16] |
P. Exner, J. Keating, P. Kuchment, T. Sunada and A. Teplaev, "Analysis on Graphs and Its Applications,'' American Mathematical Society, 2008. |
[17] |
G. Folland, "Real Analysis,'' John Wiley and Sons, New York, 1984. |
[18] |
A. Georgakopoulos, Graph topologies induced by edge lengths, Discrete Mathematics, 311 (2011), 1523-1542.doi: 10.1016/j.disc.2011.02.012. |
[19] | |
[20] |
P. E. T. Jorgensen and E. P. J. Pearse, Operator theory and analysis of infinite networks, preprint, arXiv:0806.3881. |
[21] |
T. Kato, "Perturbation Theory for Linear Operators,'' Springer-Verlag, New York, 1995. |
[22] |
M. Keller and D. Lenz, Unbounded laplacians on graphs: Basic spectral properties and the heat equation, Math. Model. Nat. Phenom., 5 (2010), 198-224.doi: 10.1051/mmnp/20105409. |
[23] | |
[24] |
R. Lyons and Y. Peres, "Probability on Trees and Networks,'' Cambridge University Press. In preparation. http://mypage.iu.edu/~rdlyons |
[25] |
B. Maury, D. Salort and C. Vannier, Trace theorem for trees and application to the human lungs, Networks and Heterogeneous Media, 4 (2009), 469-500. |
[26] |
S. Nicaise, Some results on spectral theory over networks, applied to nerve impulse transmission, Springer Lecture Notes in Mathematics, 1171 (1985), 532-541.doi: 10.1007/BFb0076584. |
[27] | |
[28] |
J. Sylvester and G. Uhlmann, The Dirichlet to Neumann map and applications, Inverse problems in partial differential equations (Arcata, CA, 1989). SIAM, Philadelphia, 1990. |
[29] |
W. Woess, "Denumerable Markov Chains,'' European Mathematical Society, 2009.doi: 10.4171/071. |
[30] |
M. Picardello and W. Woess, Martin boundaries of random walks: ends of trees and groups, Trans. American Math. Soc., 302 (1987), 185-205.doi: 10.1090/S0002-9947-1987-0887505-2. |
[31] |
D. Zelig, "Properties of Solutions of Partial Differential Equations Defined on Human Lung Shaped Domains,'' Ph.D. Thesis, Department of Applied Mathematics, Technion - Israel Institute of Technology, 2005. |