-
Previous Article
Convergence of MsFEM approximations for elliptic, non-periodic homogenization problems
- NHM Home
- This Issue
-
Next Article
Preprocessing and analyzing genetic data with complex networks: An application to Obstructive Nephropathy
Dirichlet to Neumann maps for infinite quantum graphs
1. | Department of Mathematics, University of Colorado at Colorado Springs, Colorado Springs, CO 80933 |
References:
[1] |
G. Auchmuty, Steklov eigenproblems and the representation of solutions of elliptic boundary value problems, Numerical Functional Analysis and Optimization, 25 (2004), 321-348.
doi: 10.1081/NFA-120039655. |
[2] |
S. Avdonin and P. Kurasov, Inverse problems for quantum trees, Inverse Probl. Imaging, 2 (2008), 1-21.
doi: 10.3934/ipi.2008.2.1. |
[3] |
M. Belishev, Boundary spectral inverse problem on a class of graphs (trees) by the BC method, Inverse Problems, 20 (2004), 647-672.
doi: 10.1088/0266-5611/20/3/002. |
[4] |
M. Brown and R. Weikard, A Borg-Levinson theorem for trees, Proc. R. Soc. London Ser. A, 461 (2005), 3231-3243.
doi: 10.1098/rspa.2005.1513. |
[5] |
A. Calderon, On an inverse boundary value problem, Computational and Applied Mathematics, 25 (2006), 133-138.
doi: 10.1590/S0101-82052006000200002. |
[6] |
R. Carlson, Linear network models related to blood flow, in "Quantum Graphs and their Applications," Contemp. Math, 415 (2006), 65-80.
doi: 10.1090/conm/415/07860. |
[7] |
R. Carlson, Boundary value problems for infinite metric graphs, in Analysis on Graphs and Its Applications, PSPM, 77 (2008), 355-368. |
[8] |
R. Carlson, After the explosion: Dirichlet forms and boundary problems for infinite graphs,, preprint, ().
|
[9] |
E. Curtis, D. Ingerman and J. Morrow, Circular planar graphs and resistor networks, Linear Algebra Appl., 283 (1998), 115-150.
doi: 10.1016/S0024-3795(98)10087-3. |
[10] |
P. Cartier, Fonctions harmoniques sur un arbre, Sympos. Math, 9 (1972), 203-270. |
[11] |
F. Chung, "Spectral Graph Theory,'' American Mathematical Society, Providence, 1997. |
[12] |
J. Cohen, F. Colonna and D. Singman, Distributions and measures on the boundary of a tree, Journal of Mathematical Analysis and Applications, 293 (2004), 89-107.
doi: 10.1016/j.jmaa.2003.12.015. |
[13] |
Y. Colin de Verdiere, "Spectres de Graphes,'' Societe Mathematique de France, 1998. |
[14] |
Y. Colin de Verdiere, N. Torki-Hamza and F. Truc, Essential self-adjointness for combinatorial Schrödinger operators II-metrically noncomplete graphs, Mathematical Physics, Analysis, and Geometry, 14 (2011), 21-38. |
[15] |
P. Doyle and J. L. Snell, "Random Walks and Electric Networks,'' MAA, Washington, D. C., 1984. |
[16] |
P. Exner, J. Keating, P. Kuchment, T. Sunada and A. Teplaev, "Analysis on Graphs and Its Applications,'' American Mathematical Society, 2008. |
[17] |
G. Folland, "Real Analysis,'' John Wiley and Sons, New York, 1984. |
[18] |
A. Georgakopoulos, Graph topologies induced by edge lengths, Discrete Mathematics, 311 (2011), 1523-1542.
doi: 10.1016/j.disc.2011.02.012. |
[19] | |
[20] |
P. E. T. Jorgensen and E. P. J. Pearse, Operator theory and analysis of infinite networks,, preprint, ().
|
[21] |
T. Kato, "Perturbation Theory for Linear Operators,'' Springer-Verlag, New York, 1995. |
[22] |
M. Keller and D. Lenz, Unbounded laplacians on graphs: Basic spectral properties and the heat equation, Math. Model. Nat. Phenom., 5 (2010), 198-224.
doi: 10.1051/mmnp/20105409. |
[23] | |
[24] |
R. Lyons and Y. Peres, "Probability on Trees and Networks,'', Cambridge University Press. In preparation. , ().
|
[25] |
B. Maury, D. Salort and C. Vannier, Trace theorem for trees and application to the human lungs, Networks and Heterogeneous Media, 4 (2009), 469-500. |
[26] |
S. Nicaise, Some results on spectral theory over networks, applied to nerve impulse transmission, Springer Lecture Notes in Mathematics, 1171 (1985), 532-541.
doi: 10.1007/BFb0076584. |
[27] | |
[28] |
J. Sylvester and G. Uhlmann, The Dirichlet to Neumann map and applications, Inverse problems in partial differential equations (Arcata, CA, 1989). SIAM, Philadelphia, 1990. |
[29] |
W. Woess, "Denumerable Markov Chains,'' European Mathematical Society, 2009.
doi: 10.4171/071. |
[30] |
M. Picardello and W. Woess, Martin boundaries of random walks: ends of trees and groups, Trans. American Math. Soc., 302 (1987), 185-205.
doi: 10.1090/S0002-9947-1987-0887505-2. |
[31] |
D. Zelig, "Properties of Solutions of Partial Differential Equations Defined on Human Lung Shaped Domains,'' Ph.D. Thesis, Department of Applied Mathematics, Technion - Israel Institute of Technology, 2005. |
show all references
References:
[1] |
G. Auchmuty, Steklov eigenproblems and the representation of solutions of elliptic boundary value problems, Numerical Functional Analysis and Optimization, 25 (2004), 321-348.
doi: 10.1081/NFA-120039655. |
[2] |
S. Avdonin and P. Kurasov, Inverse problems for quantum trees, Inverse Probl. Imaging, 2 (2008), 1-21.
doi: 10.3934/ipi.2008.2.1. |
[3] |
M. Belishev, Boundary spectral inverse problem on a class of graphs (trees) by the BC method, Inverse Problems, 20 (2004), 647-672.
doi: 10.1088/0266-5611/20/3/002. |
[4] |
M. Brown and R. Weikard, A Borg-Levinson theorem for trees, Proc. R. Soc. London Ser. A, 461 (2005), 3231-3243.
doi: 10.1098/rspa.2005.1513. |
[5] |
A. Calderon, On an inverse boundary value problem, Computational and Applied Mathematics, 25 (2006), 133-138.
doi: 10.1590/S0101-82052006000200002. |
[6] |
R. Carlson, Linear network models related to blood flow, in "Quantum Graphs and their Applications," Contemp. Math, 415 (2006), 65-80.
doi: 10.1090/conm/415/07860. |
[7] |
R. Carlson, Boundary value problems for infinite metric graphs, in Analysis on Graphs and Its Applications, PSPM, 77 (2008), 355-368. |
[8] |
R. Carlson, After the explosion: Dirichlet forms and boundary problems for infinite graphs,, preprint, ().
|
[9] |
E. Curtis, D. Ingerman and J. Morrow, Circular planar graphs and resistor networks, Linear Algebra Appl., 283 (1998), 115-150.
doi: 10.1016/S0024-3795(98)10087-3. |
[10] |
P. Cartier, Fonctions harmoniques sur un arbre, Sympos. Math, 9 (1972), 203-270. |
[11] |
F. Chung, "Spectral Graph Theory,'' American Mathematical Society, Providence, 1997. |
[12] |
J. Cohen, F. Colonna and D. Singman, Distributions and measures on the boundary of a tree, Journal of Mathematical Analysis and Applications, 293 (2004), 89-107.
doi: 10.1016/j.jmaa.2003.12.015. |
[13] |
Y. Colin de Verdiere, "Spectres de Graphes,'' Societe Mathematique de France, 1998. |
[14] |
Y. Colin de Verdiere, N. Torki-Hamza and F. Truc, Essential self-adjointness for combinatorial Schrödinger operators II-metrically noncomplete graphs, Mathematical Physics, Analysis, and Geometry, 14 (2011), 21-38. |
[15] |
P. Doyle and J. L. Snell, "Random Walks and Electric Networks,'' MAA, Washington, D. C., 1984. |
[16] |
P. Exner, J. Keating, P. Kuchment, T. Sunada and A. Teplaev, "Analysis on Graphs and Its Applications,'' American Mathematical Society, 2008. |
[17] |
G. Folland, "Real Analysis,'' John Wiley and Sons, New York, 1984. |
[18] |
A. Georgakopoulos, Graph topologies induced by edge lengths, Discrete Mathematics, 311 (2011), 1523-1542.
doi: 10.1016/j.disc.2011.02.012. |
[19] | |
[20] |
P. E. T. Jorgensen and E. P. J. Pearse, Operator theory and analysis of infinite networks,, preprint, ().
|
[21] |
T. Kato, "Perturbation Theory for Linear Operators,'' Springer-Verlag, New York, 1995. |
[22] |
M. Keller and D. Lenz, Unbounded laplacians on graphs: Basic spectral properties and the heat equation, Math. Model. Nat. Phenom., 5 (2010), 198-224.
doi: 10.1051/mmnp/20105409. |
[23] | |
[24] |
R. Lyons and Y. Peres, "Probability on Trees and Networks,'', Cambridge University Press. In preparation. , ().
|
[25] |
B. Maury, D. Salort and C. Vannier, Trace theorem for trees and application to the human lungs, Networks and Heterogeneous Media, 4 (2009), 469-500. |
[26] |
S. Nicaise, Some results on spectral theory over networks, applied to nerve impulse transmission, Springer Lecture Notes in Mathematics, 1171 (1985), 532-541.
doi: 10.1007/BFb0076584. |
[27] | |
[28] |
J. Sylvester and G. Uhlmann, The Dirichlet to Neumann map and applications, Inverse problems in partial differential equations (Arcata, CA, 1989). SIAM, Philadelphia, 1990. |
[29] |
W. Woess, "Denumerable Markov Chains,'' European Mathematical Society, 2009.
doi: 10.4171/071. |
[30] |
M. Picardello and W. Woess, Martin boundaries of random walks: ends of trees and groups, Trans. American Math. Soc., 302 (1987), 185-205.
doi: 10.1090/S0002-9947-1987-0887505-2. |
[31] |
D. Zelig, "Properties of Solutions of Partial Differential Equations Defined on Human Lung Shaped Domains,'' Ph.D. Thesis, Department of Applied Mathematics, Technion - Israel Institute of Technology, 2005. |
[1] |
Ihsane Bikri, Ronald B. Guenther, Enrique A. Thomann. The Dirichlet to Neumann map - An application to the Stokes problem in half space. Discrete and Continuous Dynamical Systems - S, 2010, 3 (2) : 221-230. doi: 10.3934/dcdss.2010.3.221 |
[2] |
Carmen Calvo-Jurado, Juan Casado-Díaz, Manuel Luna-Laynez. Parabolic problems with varying operators and Dirichlet and Neumann boundary conditions on varying sets. Conference Publications, 2007, 2007 (Special) : 181-190. doi: 10.3934/proc.2007.2007.181 |
[3] |
Roberto De Leo, James A. Yorke. The graph of the logistic map is a tower. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5243-5269. doi: 10.3934/dcds.2021075 |
[4] |
Shouchuan Hu, Nikolaos S. Papageorgiou. Solutions of nonlinear nonhomogeneous Neumann and Dirichlet problems. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2889-2922. doi: 10.3934/cpaa.2013.12.2889 |
[5] |
Victor Isakov. Increasing stability for the Schrödinger potential from the Dirichlet-to Neumann map. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 631-640. doi: 10.3934/dcdss.2011.4.631 |
[6] |
Jussi Behrndt, A. F. M. ter Elst. The Dirichlet-to-Neumann map for Schrödinger operators with complex potentials. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 661-671. doi: 10.3934/dcdss.2017033 |
[7] |
Mourad Bellassoued, David Dos Santos Ferreira. Stability estimates for the anisotropic wave equation from the Dirichlet-to-Neumann map. Inverse Problems and Imaging, 2011, 5 (4) : 745-773. doi: 10.3934/ipi.2011.5.745 |
[8] |
Sunghan Kim, Ki-Ahm Lee, Henrik Shahgholian. Homogenization of the boundary value for the Dirichlet problem. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 6843-6864. doi: 10.3934/dcds.2019234 |
[9] |
N. Arada, J.-P. Raymond. Time optimal problems with Dirichlet boundary controls. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1549-1570. doi: 10.3934/dcds.2003.9.1549 |
[10] |
Francis J. Chung. Partial data for the Neumann-Dirichlet magnetic Schrödinger inverse problem. Inverse Problems and Imaging, 2014, 8 (4) : 959-989. doi: 10.3934/ipi.2014.8.959 |
[11] |
Victor Isakov, Jenn-Nan Wang. Increasing stability for determining the potential in the Schrödinger equation with attenuation from the Dirichlet-to-Neumann map. Inverse Problems and Imaging, 2014, 8 (4) : 1139-1150. doi: 10.3934/ipi.2014.8.1139 |
[12] |
Oleg Yu. Imanuvilov, Masahiro Yamamoto. Stability for determination of Riemannian metrics by spectral data and Dirichlet-to-Neumann map limited on arbitrary subboundary. Inverse Problems and Imaging, 2019, 13 (6) : 1213-1258. doi: 10.3934/ipi.2019054 |
[13] |
Mourad Bellassoued, Zouhour Rezig. Recovery of transversal metric tensor in the Schrödinger equation from the Dirichlet-to-Neumann map. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1061-1084. doi: 10.3934/dcdss.2021158 |
[14] |
Gökhan Mutlu. On the quotient quantum graph with respect to the regular representation. Communications on Pure and Applied Analysis, 2021, 20 (2) : 885-902. doi: 10.3934/cpaa.2020295 |
[15] |
Liu Hui, Lin Zhi, Waqas Ahmad. Network(graph) data research in the coordinate system. Mathematical Foundations of Computing, 2018, 1 (1) : 1-10. doi: 10.3934/mfc.2018001 |
[16] |
Deena Schmidt, Janet Best, Mark S. Blumberg. Random graph and stochastic process contributions to network dynamics. Conference Publications, 2011, 2011 (Special) : 1279-1288. doi: 10.3934/proc.2011.2011.1279 |
[17] |
Vladimir P. Burskii, Alexei S. Zhedanov. On Dirichlet, Poncelet and Abel problems. Communications on Pure and Applied Analysis, 2013, 12 (4) : 1587-1633. doi: 10.3934/cpaa.2013.12.1587 |
[18] |
Piotr Kowalski. The existence of a solution for Dirichlet boundary value problem for a Duffing type differential inclusion. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2569-2580. doi: 10.3934/dcdsb.2014.19.2569 |
[19] |
Dorina Mitrea, Marius Mitrea, Sylvie Monniaux. The Poisson problem for the exterior derivative operator with Dirichlet boundary condition in nonsmooth domains. Communications on Pure and Applied Analysis, 2008, 7 (6) : 1295-1333. doi: 10.3934/cpaa.2008.7.1295 |
[20] |
Agnid Banerjee, Nicola Garofalo. On the Dirichlet boundary value problem for the normalized $p$-laplacian evolution. Communications on Pure and Applied Analysis, 2015, 14 (1) : 1-21. doi: 10.3934/cpaa.2015.14.1 |
2020 Impact Factor: 1.213
Tools
Metrics
Other articles
by authors
[Back to Top]