\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Dirichlet to Neumann maps for infinite quantum graphs

Abstract Related Papers Cited by
  • The Dirichlet problem and Dirichlet to Neumann map are analyzed for elliptic equations on a large collection of infinite quantum graphs. For a dense set of continuous functions on the graph boundary, the Dirichlet to Neumann map has values in the Radon measures on the graph boundary.
    Mathematics Subject Classification: Primary: 34B45.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    G. Auchmuty, Steklov eigenproblems and the representation of solutions of elliptic boundary value problems, Numerical Functional Analysis and Optimization, 25 (2004), 321-348.doi: 10.1081/NFA-120039655.

    [2]

    S. Avdonin and P. Kurasov, Inverse problems for quantum trees, Inverse Probl. Imaging, 2 (2008), 1-21.doi: 10.3934/ipi.2008.2.1.

    [3]

    M. Belishev, Boundary spectral inverse problem on a class of graphs (trees) by the BC method, Inverse Problems, 20 (2004), 647-672.doi: 10.1088/0266-5611/20/3/002.

    [4]

    M. Brown and R. Weikard, A Borg-Levinson theorem for trees, Proc. R. Soc. London Ser. A, 461 (2005), 3231-3243.doi: 10.1098/rspa.2005.1513.

    [5]

    A. Calderon, On an inverse boundary value problem, Computational and Applied Mathematics, 25 (2006), 133-138.doi: 10.1590/S0101-82052006000200002.

    [6]

    R. Carlson, Linear network models related to blood flow, in "Quantum Graphs and their Applications," Contemp. Math, 415 (2006), 65-80.doi: 10.1090/conm/415/07860.

    [7]

    R. Carlson, Boundary value problems for infinite metric graphs, in Analysis on Graphs and Its Applications, PSPM, 77 (2008), 355-368.

    [8]

    R. CarlsonAfter the explosion: Dirichlet forms and boundary problems for infinite graphs, preprint, arXiv:1109.3137.

    [9]

    E. Curtis, D. Ingerman and J. Morrow, Circular planar graphs and resistor networks, Linear Algebra Appl., 283 (1998), 115-150.doi: 10.1016/S0024-3795(98)10087-3.

    [10]

    P. Cartier, Fonctions harmoniques sur un arbre, Sympos. Math, 9 (1972), 203-270.

    [11]

    F. Chung, "Spectral Graph Theory,'' American Mathematical Society, Providence, 1997.

    [12]

    J. Cohen, F. Colonna and D. Singman, Distributions and measures on the boundary of a tree, Journal of Mathematical Analysis and Applications, 293 (2004), 89-107.doi: 10.1016/j.jmaa.2003.12.015.

    [13]

    Y. Colin de Verdiere, "Spectres de Graphes,'' Societe Mathematique de France, 1998.

    [14]

    Y. Colin de Verdiere, N. Torki-Hamza and F. Truc, Essential self-adjointness for combinatorial Schrödinger operators II-metrically noncomplete graphs, Mathematical Physics, Analysis, and Geometry, 14 (2011), 21-38.

    [15]

    P. Doyle and J. L. Snell, "Random Walks and Electric Networks,'' MAA, Washington, D. C., 1984.

    [16]

    P. Exner, J. Keating, P. Kuchment, T. Sunada and A. Teplaev, "Analysis on Graphs and Its Applications,'' American Mathematical Society, 2008.

    [17]

    G. Folland, "Real Analysis,'' John Wiley and Sons, New York, 1984.

    [18]

    A. Georgakopoulos, Graph topologies induced by edge lengths, Discrete Mathematics, 311 (2011), 1523-1542.doi: 10.1016/j.disc.2011.02.012.

    [19]

    J. Hocking and G. Young, "Topology,'' Addison-Wesley, 1961.

    [20]

    P. E. T. Jorgensen and E. P. J. PearseOperator theory and analysis of infinite networks, preprint, arXiv:0806.3881.

    [21]

    T. Kato, "Perturbation Theory for Linear Operators,'' Springer-Verlag, New York, 1995.

    [22]

    M. Keller and D. Lenz, Unbounded laplacians on graphs: Basic spectral properties and the heat equation, Math. Model. Nat. Phenom., 5 (2010), 198-224.doi: 10.1051/mmnp/20105409.

    [23]

    P. Lax, "Functional Analysis,'' Wiley, 2002.

    [24]

    R. Lyons and Y. Peres, "Probability on Trees and Networks,'' Cambridge University Press. In preparation. http://mypage.iu.edu/~rdlyons

    [25]

    B. Maury, D. Salort and C. Vannier, Trace theorem for trees and application to the human lungs, Networks and Heterogeneous Media, 4 (2009), 469-500.

    [26]

    S. Nicaise, Some results on spectral theory over networks, applied to nerve impulse transmission, Springer Lecture Notes in Mathematics, 1171 (1985), 532-541.doi: 10.1007/BFb0076584.

    [27]

    H. Royden, "Real Analysis,'' Macmillan, New York, 1988.

    [28]

    J. Sylvester and G. Uhlmann, The Dirichlet to Neumann map and applications, Inverse problems in partial differential equations (Arcata, CA, 1989). SIAM, Philadelphia, 1990.

    [29]

    W. Woess, "Denumerable Markov Chains,'' European Mathematical Society, 2009.doi: 10.4171/071.

    [30]

    M. Picardello and W. Woess, Martin boundaries of random walks: ends of trees and groups, Trans. American Math. Soc., 302 (1987), 185-205.doi: 10.1090/S0002-9947-1987-0887505-2.

    [31]

    D. Zelig, "Properties of Solutions of Partial Differential Equations Defined on Human Lung Shaped Domains,'' Ph.D. Thesis, Department of Applied Mathematics, Technion - Israel Institute of Technology, 2005.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(156) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return