September  2012, 7(3): 543-582. doi: 10.3934/nhm.2012.7.543

Homogenization of pinning conditions on periodic networks

1. 

Dipartimento di Matematica, Università di Roma 'La Sapienza', p.le A.Moro 2, 00185 Roma, Italy

Received  June 2011 Revised  July 2012 Published  October 2012

This paper deals with the description of the overall effect of pinning conditions in discrete systems. We study a variational problem on the discrete in which pinning sites are modeled as network subsets on which concentrated forces are imposed. We want to determine the asymptotic effect of pinning conditions on a periodic lattice as its size vanishes. Our analysis is performed in the framework of $\Gamma$-convergence and highlights the analogies and differences with the corresponding continuous problem, i.e. periodically perforated domains. We derive a functional form for the limit energies which depends on the relationship between the space dimension and the growth rate of the interaction functions.
Citation: Laura Sigalotti. Homogenization of pinning conditions on periodic networks. Networks and Heterogeneous Media, 2012, 7 (3) : 543-582. doi: 10.3934/nhm.2012.7.543
References:
[1]

R. Alicandro and M. Cicalese, A general integral representation result for continuum limits of discrete energies with superlinear growth, SIAM J. Math Anal., 36 (2004), 1-37. doi: 10.1137/S0036141003426471.

[2]

R. Alicandro and M. Cicalese, Variational analysis of the asymptotics of the $XY$ model, Arch. Rat. Mech. Anal., 192 (2009), 501-536. doi: 10.1007/s00205-008-0146-0.

[3]

N. Ansini and A. Braides, Asymptotic analysis of periodically-perforated nonlinear media, J. Math. Pures Appl., 81 (2002), 439-451; Erratum in 84 (2005), 147-148.

[4]

A. Braides, "$\Gamma$-convergence for Beginners," Oxford University Press, Oxford, 2002.

[5]

A. Braides, A handbook of $\Gamma$-convergence, in "Handbook of differential Equations: Stationary Partial DifferentialEquations" (eds. M. Chipot and P. Quittner), Elsevier, 3 (2006).

[6]

A. Braides, A. Defranceschi and E. Vitali, Homogenization of free discontinuity problems, Arch. Ration.Mech. Anal., 135 (1996), 297-356. doi: 10.1007/BF02198476.

[7]

A. Braides and L. Sigalotti, Models of defects in atomistic systems, Calculus of Variations and PDE, 41 (2011), 71-109. doi: 10.1007/s00526-010-0354-y.

[8]

D. Cioranescu and F. Murat, Un term étrange venu d'ailleurs, I and II, Nonlinear Partial Differential Equations and Their Applications, Colle de FranceSeminar. Vol. II, 98-138, and Vol. III, 154-178, Res. Notes in Math., 60 and 70, Pitman, London, 1982 and 1983, translated in (A strange term coming from nowhere), Topics in the Mathematical Modelling of Composite Materials,(eds. A. V. Cherkaev and R. V. Kohn), Birkhäuser, 1994.

[9]

G. Dal Maso, "An Introduction to $\Gamma$-Convergence," Progress in Nonlinear Differential Equations and their Applications. Birkhser Boston, Boston, 1993.

[10]

G. Dal Maso, Asymptotic behaviour of solutions of Dirichlet problems, Boll. Unione Mat. Ital., 11A (1997), 253-277.

[11]

G. Dal Maso and A. Defranceschi, Limits of nonlinear Dirichlet problems in varying domains, Manuscripta Math., 61 (1988), 251-278. doi: 10.1007/BF01258438.

[12]

G. Dal Maso and A. Garroni, New results on the asymptotic analysis of Dirichlet problems in perforated domains, Math. Mod. Meth. Appl. Sci., 4 (1994), 373-407.

[13]

G. Dal Maso, A. Garroni and I. V. Skrypnik, A capacitary method for the asymptotic analysis of Dirichlet problems for monotone operators, J. Anal. Math., 71 (1997), 263-313. doi: 10.1007/BF02788033.

[14]

G. Dal Maso and F. Murat, Asymptotic behaviour and correctors for Dirichlet problems in perforated domains with homogeneous monotone operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 24 (1997), 293-290.

[15]

A. Defranceschi and E. Vitali, Limits of minimum problems with convex obstacles for vector valued functions, Appl. Anal., 52 (1994), 1-33.

[16]

A. Garroni and S. Müller, A variational model for dislocations in the line tension limit, Arch. Rat. Mech.,181 (2006), 535-578. doi: 10.1007/s00205-006-0432-7.

[17]

A. V. Marchenko and E. Ya. Khruslov, New results in the theory of boundary value problems for regions with closed-grained boundaries, Uspekhi Math. Nauk, 33 (1978).

[18]

L. Sigalotti, Asymptotic analysis of periodically perforated nonlinear media at the critical exponent, Comm. Cont. Math., 11 (2009), 1009-1033. doi: 10.1142/S0219199709003648.

[19]

I. V. Skrypnik, Asymptotic behaviour of solutions of nonlinear elliptic problems in perforated domains, Math. Sb., 184 (1993), 67-70.

show all references

References:
[1]

R. Alicandro and M. Cicalese, A general integral representation result for continuum limits of discrete energies with superlinear growth, SIAM J. Math Anal., 36 (2004), 1-37. doi: 10.1137/S0036141003426471.

[2]

R. Alicandro and M. Cicalese, Variational analysis of the asymptotics of the $XY$ model, Arch. Rat. Mech. Anal., 192 (2009), 501-536. doi: 10.1007/s00205-008-0146-0.

[3]

N. Ansini and A. Braides, Asymptotic analysis of periodically-perforated nonlinear media, J. Math. Pures Appl., 81 (2002), 439-451; Erratum in 84 (2005), 147-148.

[4]

A. Braides, "$\Gamma$-convergence for Beginners," Oxford University Press, Oxford, 2002.

[5]

A. Braides, A handbook of $\Gamma$-convergence, in "Handbook of differential Equations: Stationary Partial DifferentialEquations" (eds. M. Chipot and P. Quittner), Elsevier, 3 (2006).

[6]

A. Braides, A. Defranceschi and E. Vitali, Homogenization of free discontinuity problems, Arch. Ration.Mech. Anal., 135 (1996), 297-356. doi: 10.1007/BF02198476.

[7]

A. Braides and L. Sigalotti, Models of defects in atomistic systems, Calculus of Variations and PDE, 41 (2011), 71-109. doi: 10.1007/s00526-010-0354-y.

[8]

D. Cioranescu and F. Murat, Un term étrange venu d'ailleurs, I and II, Nonlinear Partial Differential Equations and Their Applications, Colle de FranceSeminar. Vol. II, 98-138, and Vol. III, 154-178, Res. Notes in Math., 60 and 70, Pitman, London, 1982 and 1983, translated in (A strange term coming from nowhere), Topics in the Mathematical Modelling of Composite Materials,(eds. A. V. Cherkaev and R. V. Kohn), Birkhäuser, 1994.

[9]

G. Dal Maso, "An Introduction to $\Gamma$-Convergence," Progress in Nonlinear Differential Equations and their Applications. Birkhser Boston, Boston, 1993.

[10]

G. Dal Maso, Asymptotic behaviour of solutions of Dirichlet problems, Boll. Unione Mat. Ital., 11A (1997), 253-277.

[11]

G. Dal Maso and A. Defranceschi, Limits of nonlinear Dirichlet problems in varying domains, Manuscripta Math., 61 (1988), 251-278. doi: 10.1007/BF01258438.

[12]

G. Dal Maso and A. Garroni, New results on the asymptotic analysis of Dirichlet problems in perforated domains, Math. Mod. Meth. Appl. Sci., 4 (1994), 373-407.

[13]

G. Dal Maso, A. Garroni and I. V. Skrypnik, A capacitary method for the asymptotic analysis of Dirichlet problems for monotone operators, J. Anal. Math., 71 (1997), 263-313. doi: 10.1007/BF02788033.

[14]

G. Dal Maso and F. Murat, Asymptotic behaviour and correctors for Dirichlet problems in perforated domains with homogeneous monotone operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 24 (1997), 293-290.

[15]

A. Defranceschi and E. Vitali, Limits of minimum problems with convex obstacles for vector valued functions, Appl. Anal., 52 (1994), 1-33.

[16]

A. Garroni and S. Müller, A variational model for dislocations in the line tension limit, Arch. Rat. Mech.,181 (2006), 535-578. doi: 10.1007/s00205-006-0432-7.

[17]

A. V. Marchenko and E. Ya. Khruslov, New results in the theory of boundary value problems for regions with closed-grained boundaries, Uspekhi Math. Nauk, 33 (1978).

[18]

L. Sigalotti, Asymptotic analysis of periodically perforated nonlinear media at the critical exponent, Comm. Cont. Math., 11 (2009), 1009-1033. doi: 10.1142/S0219199709003648.

[19]

I. V. Skrypnik, Asymptotic behaviour of solutions of nonlinear elliptic problems in perforated domains, Math. Sb., 184 (1993), 67-70.

[1]

Guangze Gu, Xianhua Tang, Youpei Zhang. Ground states for asymptotically periodic fractional Kirchhoff equation with critical Sobolev exponent. Communications on Pure and Applied Analysis, 2019, 18 (6) : 3181-3200. doi: 10.3934/cpaa.2019143

[2]

Julián Fernández Bonder, Analía Silva, Juan F. Spedaletti. Gamma convergence and asymptotic behavior for eigenvalues of nonlocal problems. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2125-2140. doi: 10.3934/dcds.2020355

[3]

Gianni Dal Maso. Ennio De Giorgi and $\mathbf\Gamma$-convergence. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1017-1021. doi: 10.3934/dcds.2011.31.1017

[4]

Alexander Mielke. Deriving amplitude equations via evolutionary $\Gamma$-convergence. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2679-2700. doi: 10.3934/dcds.2015.35.2679

[5]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure and Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[6]

Yanfang Peng. On elliptic systems with Sobolev critical exponent. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3357-3373. doi: 10.3934/dcds.2016.36.3357

[7]

Sylvia Serfaty. Gamma-convergence of gradient flows on Hilbert and metric spaces and applications. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1427-1451. doi: 10.3934/dcds.2011.31.1427

[8]

Antonio De Rosa, Domenico Angelo La Manna. A non local approximation of the Gaussian perimeter: Gamma convergence and Isoperimetric properties. Communications on Pure and Applied Analysis, 2021, 20 (5) : 2101-2116. doi: 10.3934/cpaa.2021059

[9]

Lorenza D'Elia. $ \Gamma $-convergence of quadratic functionals with non uniformly elliptic conductivity matrices. Networks and Heterogeneous Media, 2022, 17 (1) : 15-45. doi: 10.3934/nhm.2021022

[10]

Lucia Scardia, Anja Schlömerkemper, Chiara Zanini. Towards uniformly $\Gamma$-equivalent theories for nonconvex discrete systems. Discrete and Continuous Dynamical Systems - B, 2012, 17 (2) : 661-686. doi: 10.3934/dcdsb.2012.17.661

[11]

Wenmin Gong, Guangcun Lu. On Dirac equation with a potential and critical Sobolev exponent. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2231-2263. doi: 10.3934/cpaa.2015.14.2231

[12]

Maurizio Grasselli, Vittorino Pata. On the damped semilinear wave equation with critical exponent. Conference Publications, 2003, 2003 (Special) : 351-358. doi: 10.3934/proc.2003.2003.351

[13]

Yong-Yong Li, Yan-Fang Xue, Chun-Lei Tang. Ground state solutions for asymptotically periodic modified Schr$ \ddot{\mbox{o}} $dinger-Poisson system involving critical exponent. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2299-2324. doi: 10.3934/cpaa.2019104

[14]

Jian Zhai, Zhihui Cai. $\Gamma$-convergence with Dirichlet boundary condition and Landau-Lifshitz functional for thin film. Discrete and Continuous Dynamical Systems - B, 2009, 11 (4) : 1071-1085. doi: 10.3934/dcdsb.2009.11.1071

[15]

Harun Karsli, Purshottam Narain Agrawal. Rate of convergence of Stancu type modified $ q $-Gamma operators for functions with derivatives of bounded variation. Mathematical Foundations of Computing, 2022  doi: 10.3934/mfc.2022002

[16]

Maoding Zhen, Jinchun He, Haoyuan Xu, Meihua Yang. Positive ground state solutions for fractional Laplacian system with one critical exponent and one subcritical exponent. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6523-6539. doi: 10.3934/dcds.2019283

[17]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[18]

Qi-Lin Xie, Xing-Ping Wu, Chun-Lei Tang. Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2773-2786. doi: 10.3934/cpaa.2013.12.2773

[19]

Xu Zhang, Shiwang Ma, Qilin Xie. Bound state solutions of Schrödinger-Poisson system with critical exponent. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 605-625. doi: 10.3934/dcds.2017025

[20]

Li Ma. Blow-up for semilinear parabolic equations with critical Sobolev exponent. Communications on Pure and Applied Analysis, 2013, 12 (2) : 1103-1110. doi: 10.3934/cpaa.2013.12.1103

2020 Impact Factor: 1.213

Metrics

  • PDF downloads (42)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]