
Previous Article
Robot's finger and expansions in noninteger bases
 NHM Home
 This Issue

Next Article
Differential equation approximations of stochastic network processes: An operator semigroup approach
A sufficient condition for classified networks to possess complex network features
1.  College of Science, Nanjing University of Aeronautics & Astronautics, Nanjing, 210016, China, China, China 
2.  College of Science, Nanjing University of Posts and Telecommunications, Nanjing, 210046, China 
References:
[1] 
R. Albert and A.L. Barabási, Emergence of scaling in random networks, Science, 286 (1999), 509512. doi: 10.1126/science.286.5439.509. 
[2] 
R. Albert and A.L. Barabási, Statistical mechanics of complex networks, Reviews of Mordern Physics, 74 (2002), 4797. doi: 10.1103/RevModPhys.74.47. 
[3] 
D. J. Aldous, A tractable complex network model based on the stochastic meanfield model of distance, in "Complex Networks," Lecture Notes in Physics, 650, Springer, Berlin, (2004), 5187. 
[4] 
D. J. Aldous and W. S. Kendall, Shortlength routes in lowcost networks via Poisson line patterns, Advances in Applied Probability, 40 (2008), 121. doi: 10.1239/aap/1208358883. 
[5] 
H. G. Bartel, H. J. Mucha and J. Dolata, On a modified graphtheoretic partitioning method of cluster analysis, MatchCommunications in Mathematical and in Computer Chemistry, 48 (2003), 209233. 
[6] 
B. Bollobás, S. Janson and O. Riordan, The phase transition in inhomogeneous random graphs, Random Structures and Algorithms, 31 (2007), 3122. doi: 10.1002/rsa.20168. 
[7] 
A. DiazGuilera, Complex networks: Statics and dynamics, Advanced Summer School in Physics 2006, 885 (2007), 107128. 
[8] 
Z. P. Fan, G. R. Chen and Y. N. Zhang, A comprehensive multilocalworld model for complex networks, Physics Letters A, 373 (2009), 16011605. doi: 10.1016/j.physleta.2009.02.072. 
[9] 
A. Ganesh and F. Xue, On the connectivity and diameter of smallworld networks, Advances in Applied Probability, 39 (2007), 853863. doi: 10.1239/aap/1198177228. 
[10] 
P. Holme and B. J. Kim, Growing scalefree networks with tunable clustering, Physical Review E, 65 (2002), 026107. 
[11] 
G. Lee and G. I. Kim, Degree and wealth distribution in a network, Physica AStatistical Mechanics and its Applications, 383 (2007), 677686. 
[12] 
N. Miyoshi, T. Shigezumi, R. Uehara and O. Watanabe, Scale free interval graphs, Theoretical Computer Science, 410 (2009), 45884600. doi: 10.1016/j.tcs.2009.08.012. 
[13] 
Y. Ou and C.Q. Zhang, A new multimembership clustering method, Journal of Industrial and Management Optimization, 3 (2007), 619624. doi: 10.3934/jimo.2007.3.619. 
[14] 
M. M. Sørensen, btree facets for the simple graph partitioning polytope, Journal of Combinatorial Optimization, 8 (2004), 151170. doi: 10.1023/B:JOCO.0000031417.96218.26. 
[15] 
J. Szymański, Concentration of vertex degrees in a scalefree random graph process, Random Structures and Algorithms, 26 (2005), 224236. doi: 10.1002/rsa.20065. 
[16] 
D. J. Watts and S. H. Strogatz, Collective dynamics of 'smallworld' networks, Nature, 393 (1998), 440442. doi: 10.1038/30918. 
show all references
References:
[1] 
R. Albert and A.L. Barabási, Emergence of scaling in random networks, Science, 286 (1999), 509512. doi: 10.1126/science.286.5439.509. 
[2] 
R. Albert and A.L. Barabási, Statistical mechanics of complex networks, Reviews of Mordern Physics, 74 (2002), 4797. doi: 10.1103/RevModPhys.74.47. 
[3] 
D. J. Aldous, A tractable complex network model based on the stochastic meanfield model of distance, in "Complex Networks," Lecture Notes in Physics, 650, Springer, Berlin, (2004), 5187. 
[4] 
D. J. Aldous and W. S. Kendall, Shortlength routes in lowcost networks via Poisson line patterns, Advances in Applied Probability, 40 (2008), 121. doi: 10.1239/aap/1208358883. 
[5] 
H. G. Bartel, H. J. Mucha and J. Dolata, On a modified graphtheoretic partitioning method of cluster analysis, MatchCommunications in Mathematical and in Computer Chemistry, 48 (2003), 209233. 
[6] 
B. Bollobás, S. Janson and O. Riordan, The phase transition in inhomogeneous random graphs, Random Structures and Algorithms, 31 (2007), 3122. doi: 10.1002/rsa.20168. 
[7] 
A. DiazGuilera, Complex networks: Statics and dynamics, Advanced Summer School in Physics 2006, 885 (2007), 107128. 
[8] 
Z. P. Fan, G. R. Chen and Y. N. Zhang, A comprehensive multilocalworld model for complex networks, Physics Letters A, 373 (2009), 16011605. doi: 10.1016/j.physleta.2009.02.072. 
[9] 
A. Ganesh and F. Xue, On the connectivity and diameter of smallworld networks, Advances in Applied Probability, 39 (2007), 853863. doi: 10.1239/aap/1198177228. 
[10] 
P. Holme and B. J. Kim, Growing scalefree networks with tunable clustering, Physical Review E, 65 (2002), 026107. 
[11] 
G. Lee and G. I. Kim, Degree and wealth distribution in a network, Physica AStatistical Mechanics and its Applications, 383 (2007), 677686. 
[12] 
N. Miyoshi, T. Shigezumi, R. Uehara and O. Watanabe, Scale free interval graphs, Theoretical Computer Science, 410 (2009), 45884600. doi: 10.1016/j.tcs.2009.08.012. 
[13] 
Y. Ou and C.Q. Zhang, A new multimembership clustering method, Journal of Industrial and Management Optimization, 3 (2007), 619624. doi: 10.3934/jimo.2007.3.619. 
[14] 
M. M. Sørensen, btree facets for the simple graph partitioning polytope, Journal of Combinatorial Optimization, 8 (2004), 151170. doi: 10.1023/B:JOCO.0000031417.96218.26. 
[15] 
J. Szymański, Concentration of vertex degrees in a scalefree random graph process, Random Structures and Algorithms, 26 (2005), 224236. doi: 10.1002/rsa.20065. 
[16] 
D. J. Watts and S. H. Strogatz, Collective dynamics of 'smallworld' networks, Nature, 393 (1998), 440442. doi: 10.1038/30918. 
[1] 
Deena Schmidt, Janet Best, Mark S. Blumberg. Random graph and stochastic process contributions to network dynamics. Conference Publications, 2011, 2011 (Special) : 12791288. doi: 10.3934/proc.2011.2011.1279 
[2] 
Francesco Sanna Passino, Nicholas A. Heard. Modelling dynamic network evolution as a PitmanYor process. Foundations of Data Science, 2019, 1 (3) : 293306. doi: 10.3934/fods.2019013 
[3] 
Weiqing Xie. A free boundary problem arising from the process of Czochralski crystal growth. Conference Publications, 2001, 2001 (Special) : 380385. doi: 10.3934/proc.2001.2001.380 
[4] 
Pikkala Vijaya Laxmi, Obsie Mussa Yesuf. Analysis of a finite buffer general input queue with Markovian service process and accessible and nonaccessible batch service. Journal of Industrial and Management Optimization, 2010, 6 (4) : 929944. doi: 10.3934/jimo.2010.6.929 
[5] 
TienYu Lin. Effect of warranty and quantity discounts on a deteriorating production system with a Markovian production process and allowable shortages. Journal of Industrial and Management Optimization, 2021, 17 (3) : 11011118. doi: 10.3934/jimo.2020013 
[6] 
Yan Wang, Lei Wang, Yanxiang Zhao, Aimin Song, Yanping Ma. A stochastic model for microbial fermentation process under Gaussian white noise environment. Numerical Algebra, Control and Optimization, 2015, 5 (4) : 381392. doi: 10.3934/naco.2015.5.381 
[7] 
Hongjun Gao, Fei Liang. On the stochastic beam equation driven by a NonGaussian Lévy process. Discrete and Continuous Dynamical Systems  B, 2014, 19 (4) : 10271045. doi: 10.3934/dcdsb.2014.19.1027 
[8] 
Linlin Tian, Xiaoyi Zhang, Yizhou Bai. Optimal dividend of compound poisson process under a stochastic interest rate. Journal of Industrial and Management Optimization, 2020, 16 (5) : 21412157. doi: 10.3934/jimo.2019047 
[9] 
Daoyi Xu, Yumei Huang, Zhiguo Yang. Existence theorems for periodic Markov process and stochastic functional differential equations. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 10051023. doi: 10.3934/dcds.2009.24.1005 
[10] 
Zhongming Chen, Liqun Qi. Circulant tensors with applications to spectral hypergraph theory and stochastic process. Journal of Industrial and Management Optimization, 2016, 12 (4) : 12271247. doi: 10.3934/jimo.2016.12.1227 
[11] 
Yejuan Wang, Peter E. Kloeden. The uniform attractor of a multivalued process generated by reactiondiffusion delay equations on an unbounded domain. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 43434370. doi: 10.3934/dcds.2014.34.4343 
[12] 
Junjie Peng, Ning Chen, Jiayang Dai, Weihua Gui. A goethite process modeling method by Asynchronous Fuzzy Cognitive Network based on an improved constrained chicken swarm optimization algorithm. Journal of Industrial and Management Optimization, 2021, 17 (3) : 12691287. doi: 10.3934/jimo.2020021 
[13] 
Ummugul Bulut, Edward J. Allen. Derivation of SDES for a macroevolutionary process. Discrete and Continuous Dynamical Systems  B, 2013, 18 (7) : 17771792. doi: 10.3934/dcdsb.2013.18.1777 
[14] 
Harish Garg. Some robust improved geometric aggregation operators under intervalvalued intuitionistic fuzzy environment for multicriteria decisionmaking process. Journal of Industrial and Management Optimization, 2018, 14 (1) : 283308. doi: 10.3934/jimo.2017047 
[15] 
Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by GLévy process with discretetime feedback control. Discrete and Continuous Dynamical Systems  B, 2021, 26 (2) : 755774. doi: 10.3934/dcdsb.2020133 
[16] 
Karel Kadlec, Bohdan Maslowski. Ergodic boundary and point control for linear stochastic PDEs driven by a cylindrical Lévy process. Discrete and Continuous Dynamical Systems  B, 2020, 25 (10) : 40394055. doi: 10.3934/dcdsb.2020137 
[17] 
Tomás Caraballo, Carlos Ogouyandjou, Fulbert Kuessi Allognissode, Mamadou Abdoul Diop. Existence and exponential stability for neutral stochastic integro–differential equations with impulses driven by a Rosenblatt process. Discrete and Continuous Dynamical Systems  B, 2020, 25 (2) : 507528. doi: 10.3934/dcdsb.2019251 
[18] 
Shaokuan Chen, Shanjian Tang. Semilinear backward stochastic integral partial differential equations driven by a Brownian motion and a Poisson point process. Mathematical Control and Related Fields, 2015, 5 (3) : 401434. doi: 10.3934/mcrf.2015.5.401 
[19] 
Xiaobin Sun, Jianliang Zhai. Averaging principle for stochastic real GinzburgLandau equation driven by $ \alpha $stable process. Communications on Pure and Applied Analysis, 2020, 19 (3) : 12911319. doi: 10.3934/cpaa.2020063 
[20] 
Gregorio Díaz, Jesús Ildefonso Díaz. Stochastic energy balance climate models with Legendre weighted diffusion and an additive cylindrical Wiener process forcing. Discrete and Continuous Dynamical Systems  S, 2021 doi: 10.3934/dcdss.2021165 
2020 Impact Factor: 1.213
Tools
Metrics
Other articles
by authors
[Back to Top]