\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Sturm global attractors for $S^1$-equivariant parabolic equations

Abstract Related Papers Cited by
  • We consider a semilinear parabolic equation of the form $u_t = u_{xx} + f(u,u_x)$ defined on the circle $x ∈ S^1=\mathbb{R}/2\pi\mathbb{Z}$. For a dissipative nonlinearity $f$ this equation generates a dissipative semiflow in the appropriate function space, and the corresponding global attractor $A_f$ is called a Sturm attractor. If $f=f(u,p)$ is even in $p$, then the semiflow possesses an embedded flow satisfying Neumann boundary conditions on the half-interval $(0,\pi)$. This is due to $O(2)$ equivariance of the semiflow and, more specifically, due to reflection at the axis through $x=0,\pi\in S^1$. For general $f=f(u,p)$, where only $SO(2)$ equivariance prevails, we will nevertheless use the Sturm permutation $\sigma$ introduced for the characterization of Neumann flows to obtain a purely combinatorial characterization of the Sturm attractors $A_f$ on the circle. With this Sturm permutation $\sigma$ we then enumerate and describe the heteroclinic connections of all Morse-Smale attractors $A_f$ with $m$ stationary solutions and $q$ periodic orbits, up to $n:=m+2q \le 9$.
    Mathematics Subject Classification: Primary: 34K17; Secondary: 34D45, 34K18.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. Abraham and J. Robbin, "Transversal Mappings and Flows," Benjamin, New York, 1967.

    [2]

    S. Angenent, The Morse-Smale property for a semi-linear parabolic equation, J. Differential Equations, 62 (1986), 427-442.doi: 10.1016/0022-0396(86)90093-8.

    [3]

    S. Angenent, The zero set of a solution of a parabolic equation, J. Reine Angew. Math., 390 (1988), 79-96.doi: 10.1515/crll.1988.390.79.

    [4]

    S. Angenent and B. Fiedler, The dynamics of rotating waves in scalar reaction diffusion equations, Trans. Amer. Math. Soc., 307 (1988), 545-568.doi: 10.2307/2001188.

    [5]

    V. I. Arnold, A branched covering $CP^2 \rightarrow S^4$, hyperbolicity and projective topology, Siberian Math. J., 29 (1988)(1989), 717-726.doi: 10.1007/BF00970265.

    [6]

    A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations," North Holland, Amsterdam, 1992.

    [7]

    P. Brunovský and B. Fiedler, Connecting orbits in scalar reaction diffusion equations, Dynamics Reported, 1 (1988), 57-89.

    [8]

    P. Brunovský and B. Fiedler, Connecting orbits in scalar reaction diffusion equations II: The complete solution, J. Differential Equations, 81 (1989), 106-135.doi: 10.1016/0022-0396(89)90180-0.

    [9]

    E. A. Coddington and N. Levinson, "Theory of Ordinary Differential Equations," McGraw-Hill, New York, 1955.

    [10]

    R. Czaja and C. Rocha, Transversality in scalar reaction-diffusion equations on a circle, J. Differential Equations, 245 (2008), 692-721.doi: 10.1016/j.jde.2008.01.018.

    [11]

    M. P. do Carmo, "Differential Geometry of Curves and Surfaces," Prentice-Hall, Inc., Englewood Cliffs, N.J., 1976.

    [12]

    B. Fiedler and J. Mallet-Paret, The Poincaré-Bendixson theorem for scalar reaction diffusion equations, Arch. Rational Mech. Anal., 107 (1989), 325-345.doi: 10.1007/BF00251553.

    [13]

    B. Fiedler, Global attractors of one-dimensional parabolic equations: Sixteen examples, Tatra Mt. Math. Publ., 4 (1994), 67-92.

    [14]

    B. Fiedler, Do global attractors depend on boundary conditions?, Doc. Math. J. DMV, 1 (1996), 215-228.

    [15]

    B. Fiedler and C. Rocha, Heteroclinic orbits of semilinear parabolic equations, J. Differential Equations, 125 (1996), 239-281.doi: 10.1006/jdeq.1996.0031.

    [16]

    B. Fiedler and C. Rocha, Realization of meander permutations by boundary value problems, J. Differential Equations, 156 (1999), 282-308.doi: 10.1006/jdeq.1998.3532.

    [17]

    B. Fiedler and C. Rocha, Orbit equivalence of global attractors of semilinear parabolic differential equations, Trans. Amer. Math. Soc., 352 (2000), 257-284.doi: 10.1090/S0002-9947-99-02209-6.

    [18]

    B. Fiedler and C. Rocha, Connectivity and design of planar global attractors of Sturm type. II: Connection graphs, J. Differential Equations, 245 (2008), 692-721.doi: 10.1016/j.jde.2007.09.015.

    [19]

    B. Fiedler and C. Rocha, Connectivity and design of planar global attractors of Sturm type. I: Bipolar orientations and Hamiltonian paths, J. Reine Angew. Math., 635 (2009), 71-96.doi: 10.1515/CRELLE.2009.076.

    [20]

    B. Fiedler and C. Rocha, Connectivity and design of planar global attractors of Sturm type. III: Small and platonic examples, J. Dynam. Differential Equations, 22 (2010), 509-532.doi: 10.1007/s10884-009-9149-2.

    [21]

    B. Fiedler, C. Rocha, D. Salazar and J. Solà-Morales, Dynamics of peacewise-autonomous bistable parabolic equations, in "Differential Equations and Dynamical Systems" (Lisbon, 2000), 151-163, (eds. A. Galves, J. K. Hale, C. Rocha), Fields Inst. Commun., 31, Amer. Math. Soc., Providence, RI, (2002).

    [22]

    B. Fiedler and A. Scheel, Dynamics of reaction-diffusion patterns, in "Trends in Nonlinear Analysis, Festschrift Dedicated to Willi Jäger for His 60th Birthday, 23-152" (eds. M. Kirkilionis, R. Rannacher and F. Tomi), Springer-Verlag, Heidelberg, (2002).

    [23]

    B. Fiedler, C. Rocha and M. Wolfrum, Heteroclinic orbits between rotating waves of semilinear parabolic equations on the circle, J. Differential Equations, 201 (2004), 99-138.doi: 10.1016/j.jde.2003.10.027.

    [24]

    B. Fiedler, C. Rocha and M. Wolfrum, A permutation characterization of Sturm global attractors of Hamiltonian type, J. Differential Equations, 252 (2012), 588-623.doi: 10.1016/j.jde.2011.08.013.

    [25]

    G. Fusco and C. Rocha, A permutation related to the dynamics of a scalar parabolic PDE, J. Differential Equations, 91 (1991), 75-94.doi: 10.1016/0022-0396(91)90134-U.

    [26]

    J. K. Hale, "Asymptotic Behavior of Dissipative Systems," Math. Surv., 25. AMS Publications, Providence, 1988.

    [27]

    J. K. Hale, L. T. Magalhães and W. M. Oliva, "Dynamics in Infinite Dimensions," Second edition, Applied Mathematical Sciences, 47. Springer-Verlag, New York, 2002.

    [28]

    J. K. Hale and G. Raugel, Convergence in gradient-like systems with applications to PDE, Z. Angew. Math. Phys., 43 (1992), 63-124.doi: 10.1007/BF00944741.

    [29]

    J. Härterich and M. Wolfrum, Convergence in gradient-like systems with applications to PDE, Discrete and Contin. Dyn. Syst., 12 (2005), 531-554.

    [30]

    P. Hartman, "Ordinary Differential Equations," Birkhäuser, Boston, 1982. (first edition Wiley, New York, 1964)

    [31]

    D. Henry, "Geometric Theory of Semilinear Parabolic Equations," Lect. Notes in Math, 840. Springer-Verlag, New York, 1981.

    [32]

    D. Henry, Some infinite dimensional Morse-Smale systems defined by parabolic differential equations, J. Differential Equations, 59 (1985), 165-205.doi: 10.1016/0022-0396(85)90153-6.

    [33]

    R. Joly and G. Raugel, Generic hyperbolicity of equilibria and periodic orbits of the parabolic equation on the circle, Trans. Amer. Math. Soc., 362 (2010), 5189-5211.doi: 10.1090/S0002-9947-2010-04890-1.

    [34]

    R. Joly and G. Raugel, Generic Morse-Smale property for the parabolic equation on the circle, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 1397-1440.doi: 10.1016/j.anihpc.2010.09.001.

    [35]

    T. Krisztin and H.-O. Walther, Unique periodic orbits for delay positive feedback and the global attractor, J. Dynam. Differential Equations, 13 (2001), 1-57.doi: 10.1023/A:1009091930589.

    [36]

    S. K. Lando, "Lectures on Generating Functions," Stud. Math. Lib., 23, American Mathematical Society, 2003.

    [37]

    S. K. Lando and A. K. Zvonkin, Meanders, Selecta Math. Soviet., 11 (1992), 117-144.

    [38]

    H. Matano, Convergence of solutions of one-dimensional semilinear parabolic equations, J. Math. Kyoto Univ., 18 (1878), 221-227.

    [39]

    H. Matano, Nonincrease of the lap-number of a solution for a one-dimensional semi-linear parabolic equation, J. Fac. Sci. Univ. Tokyo Sect. IA Math, 29 (1982), 401-441.

    [40]

    H. Matano, Asymptotic behavior of solutions of semilinear heat equations on $S^1$, in "Nonlinear Diffusion Equations and their Equilibrium States II, 139-162" (eds. W.-M. Ni, L. A. Peletier, J. Serrin). Springer-Verlag, New York, (1988).doi: 10.1007/978-1-4613-9608-6_8.

    [41]

    H. Matano and K.-I. Nakamura, The global attractor of semilinear parabolic equations on $S^1$, Discrete Contin. Dyn. Syst., 3 (1997), 1-24.

    [42]

    K. Mischaikow, Conley index theory, in "Dynamical Systems (Montecatini Terme, 1994), 119-207" (eds. L. Arnold, K. Mischaikow and G. Raugel), Lecture Notes in Math., 1609, Springer, Berlin, (1995).doi: 10.1007/BFb0095240.

    [43]

    Y. Miyamoto, On connecting orbits of semilinear parabolic equations on $S^1$, Documenta Math., 9 (2004), 435-469.

    [44]

    N. Nadirashvili, Connecting orbits for nonlinear parabolic equations, Asian J. Math., 2 (1998), 135-140.

    [45]

    A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations," Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983.doi: 10.1007/978-1-4612-5561-1.

    [46]

    C. Ragazzo, Scalar autonomous second order ordinary differential equations, Preprint, (2010).doi: 10.1007/s12346-011-0063-8.

    [47]

    G. Raugel, Global attractors in partial differential equations, in "Handbook of Dynamical Systems 2, 885-982" (ed. B. Fiedler), North-Holland, Amsterdam, (2002).doi: 10.1016/S1874-575X(02)80038-8.

    [48]

    C. Rocha, Properties of the attractor of a scalar parabolic PDE, J. Dynam. Differential Equations, 3 (1991), 575-591.doi: 10.1007/BF01049100.

    [49]

    C. Rocha, Bifurcations in discretized reaction-diffusion equations, Resenhas IME-USP, 1 (1994), 403-419.

    [50]

    C. Rocha, Realization of period maps of planar Hamiltonian systems, J. Dynam. Differential Equations, 19 (2007), 571-591.doi: 10.1007/s10884-007-9081-2.

    [51]

    B. Sandstede and B. Fiedler, Dynamics of periodically forced parabolic equations on the circle, Ergodic Theory Dynam. Systems, 12 (1992), 559-571.doi: 10.1017/S0143385700006933.

    [52]

    R. Schaaf, "Global Solution Branches of Two Point Boundary Value Problems," Lect. Notes in Math, 1458, Springer-Verlag, New York, 1990.

    [53]

    J. Smoller, "Shock Waves and Reaction-Diffusion Equations," Springer-Verlag, New York, 1983.

    [54]

    C. Sturm, Sur une classe d'équations à différences partielles, J. Math. Pure Appl., 1 (1836), 373-444.

    [55]

    M. Urabe, Relations between periods and amplitudes of periodic solutions of $\ddot x + g(x) = 0$, Funkcial. Ekvac., 6 (1964), 63-88.

    [56]

    M. Wolfrum, Geometry of heteroclinic cascades in scalar parabolic differential equations, J. Dynam. Differential Equations, 14 (2002), 207-241.doi: 10.1023/A:1012967428328.

    [57]

    M. Wolfrum, A sequence of order relations, encoding heteroclinic connections in scalar parabolic PDE, J. Differential Equations, 183 (2002), 56-78.doi: 10.1006/jdeq.2001.4114.

    [58]

    J. A. Yorke, Periods of periodic solutions and the Lipschitz constant, Proc. Amer. Math. Soc., 22 (1969), 509-512.

    [59]

    T. I. Zelenyak, Stabilization of solutions of boundary value problems for a second-order parabolic equation with one space variable, Differential Equations, 4 (1968), 34-45.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(143) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return