Advanced Search
Article Contents
Article Contents

Sturm global attractors for $S^1$-equivariant parabolic equations

Abstract Related Papers Cited by
  • We consider a semilinear parabolic equation of the form $u_t = u_{xx} + f(u,u_x)$ defined on the circle $x ∈ S^1=\mathbb{R}/2\pi\mathbb{Z}$. For a dissipative nonlinearity $f$ this equation generates a dissipative semiflow in the appropriate function space, and the corresponding global attractor $A_f$ is called a Sturm attractor. If $f=f(u,p)$ is even in $p$, then the semiflow possesses an embedded flow satisfying Neumann boundary conditions on the half-interval $(0,\pi)$. This is due to $O(2)$ equivariance of the semiflow and, more specifically, due to reflection at the axis through $x=0,\pi\in S^1$. For general $f=f(u,p)$, where only $SO(2)$ equivariance prevails, we will nevertheless use the Sturm permutation $\sigma$ introduced for the characterization of Neumann flows to obtain a purely combinatorial characterization of the Sturm attractors $A_f$ on the circle. With this Sturm permutation $\sigma$ we then enumerate and describe the heteroclinic connections of all Morse-Smale attractors $A_f$ with $m$ stationary solutions and $q$ periodic orbits, up to $n:=m+2q \le 9$.
    Mathematics Subject Classification: Primary: 34K17; Secondary: 34D45, 34K18.


    \begin{equation} \\ \end{equation}
  • [1]

    R. Abraham and J. Robbin, "Transversal Mappings and Flows," Benjamin, New York, 1967.


    S. Angenent, The Morse-Smale property for a semi-linear parabolic equation, J. Differential Equations, 62 (1986), 427-442.doi: 10.1016/0022-0396(86)90093-8.


    S. Angenent, The zero set of a solution of a parabolic equation, J. Reine Angew. Math., 390 (1988), 79-96.doi: 10.1515/crll.1988.390.79.


    S. Angenent and B. Fiedler, The dynamics of rotating waves in scalar reaction diffusion equations, Trans. Amer. Math. Soc., 307 (1988), 545-568.doi: 10.2307/2001188.


    V. I. Arnold, A branched covering $CP^2 \rightarrow S^4$, hyperbolicity and projective topology, Siberian Math. J., 29 (1988)(1989), 717-726.doi: 10.1007/BF00970265.


    A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations," North Holland, Amsterdam, 1992.


    P. Brunovský and B. Fiedler, Connecting orbits in scalar reaction diffusion equations, Dynamics Reported, 1 (1988), 57-89.


    P. Brunovský and B. Fiedler, Connecting orbits in scalar reaction diffusion equations II: The complete solution, J. Differential Equations, 81 (1989), 106-135.doi: 10.1016/0022-0396(89)90180-0.


    E. A. Coddington and N. Levinson, "Theory of Ordinary Differential Equations," McGraw-Hill, New York, 1955.


    R. Czaja and C. Rocha, Transversality in scalar reaction-diffusion equations on a circle, J. Differential Equations, 245 (2008), 692-721.doi: 10.1016/j.jde.2008.01.018.


    M. P. do Carmo, "Differential Geometry of Curves and Surfaces," Prentice-Hall, Inc., Englewood Cliffs, N.J., 1976.


    B. Fiedler and J. Mallet-Paret, The Poincaré-Bendixson theorem for scalar reaction diffusion equations, Arch. Rational Mech. Anal., 107 (1989), 325-345.doi: 10.1007/BF00251553.


    B. Fiedler, Global attractors of one-dimensional parabolic equations: Sixteen examples, Tatra Mt. Math. Publ., 4 (1994), 67-92.


    B. Fiedler, Do global attractors depend on boundary conditions?, Doc. Math. J. DMV, 1 (1996), 215-228.


    B. Fiedler and C. Rocha, Heteroclinic orbits of semilinear parabolic equations, J. Differential Equations, 125 (1996), 239-281.doi: 10.1006/jdeq.1996.0031.


    B. Fiedler and C. Rocha, Realization of meander permutations by boundary value problems, J. Differential Equations, 156 (1999), 282-308.doi: 10.1006/jdeq.1998.3532.


    B. Fiedler and C. Rocha, Orbit equivalence of global attractors of semilinear parabolic differential equations, Trans. Amer. Math. Soc., 352 (2000), 257-284.doi: 10.1090/S0002-9947-99-02209-6.


    B. Fiedler and C. Rocha, Connectivity and design of planar global attractors of Sturm type. II: Connection graphs, J. Differential Equations, 245 (2008), 692-721.doi: 10.1016/j.jde.2007.09.015.


    B. Fiedler and C. Rocha, Connectivity and design of planar global attractors of Sturm type. I: Bipolar orientations and Hamiltonian paths, J. Reine Angew. Math., 635 (2009), 71-96.doi: 10.1515/CRELLE.2009.076.


    B. Fiedler and C. Rocha, Connectivity and design of planar global attractors of Sturm type. III: Small and platonic examples, J. Dynam. Differential Equations, 22 (2010), 509-532.doi: 10.1007/s10884-009-9149-2.


    B. Fiedler, C. Rocha, D. Salazar and J. Solà-Morales, Dynamics of peacewise-autonomous bistable parabolic equations, in "Differential Equations and Dynamical Systems" (Lisbon, 2000), 151-163, (eds. A. Galves, J. K. Hale, C. Rocha), Fields Inst. Commun., 31, Amer. Math. Soc., Providence, RI, (2002).


    B. Fiedler and A. Scheel, Dynamics of reaction-diffusion patterns, in "Trends in Nonlinear Analysis, Festschrift Dedicated to Willi Jäger for His 60th Birthday, 23-152" (eds. M. Kirkilionis, R. Rannacher and F. Tomi), Springer-Verlag, Heidelberg, (2002).


    B. Fiedler, C. Rocha and M. Wolfrum, Heteroclinic orbits between rotating waves of semilinear parabolic equations on the circle, J. Differential Equations, 201 (2004), 99-138.doi: 10.1016/j.jde.2003.10.027.


    B. Fiedler, C. Rocha and M. Wolfrum, A permutation characterization of Sturm global attractors of Hamiltonian type, J. Differential Equations, 252 (2012), 588-623.doi: 10.1016/j.jde.2011.08.013.


    G. Fusco and C. Rocha, A permutation related to the dynamics of a scalar parabolic PDE, J. Differential Equations, 91 (1991), 75-94.doi: 10.1016/0022-0396(91)90134-U.


    J. K. Hale, "Asymptotic Behavior of Dissipative Systems," Math. Surv., 25. AMS Publications, Providence, 1988.


    J. K. Hale, L. T. Magalhães and W. M. Oliva, "Dynamics in Infinite Dimensions," Second edition, Applied Mathematical Sciences, 47. Springer-Verlag, New York, 2002.


    J. K. Hale and G. Raugel, Convergence in gradient-like systems with applications to PDE, Z. Angew. Math. Phys., 43 (1992), 63-124.doi: 10.1007/BF00944741.


    J. Härterich and M. Wolfrum, Convergence in gradient-like systems with applications to PDE, Discrete and Contin. Dyn. Syst., 12 (2005), 531-554.


    P. Hartman, "Ordinary Differential Equations," Birkhäuser, Boston, 1982. (first edition Wiley, New York, 1964)


    D. Henry, "Geometric Theory of Semilinear Parabolic Equations," Lect. Notes in Math, 840. Springer-Verlag, New York, 1981.


    D. Henry, Some infinite dimensional Morse-Smale systems defined by parabolic differential equations, J. Differential Equations, 59 (1985), 165-205.doi: 10.1016/0022-0396(85)90153-6.


    R. Joly and G. Raugel, Generic hyperbolicity of equilibria and periodic orbits of the parabolic equation on the circle, Trans. Amer. Math. Soc., 362 (2010), 5189-5211.doi: 10.1090/S0002-9947-2010-04890-1.


    R. Joly and G. Raugel, Generic Morse-Smale property for the parabolic equation on the circle, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 1397-1440.doi: 10.1016/j.anihpc.2010.09.001.


    T. Krisztin and H.-O. Walther, Unique periodic orbits for delay positive feedback and the global attractor, J. Dynam. Differential Equations, 13 (2001), 1-57.doi: 10.1023/A:1009091930589.


    S. K. Lando, "Lectures on Generating Functions," Stud. Math. Lib., 23, American Mathematical Society, 2003.


    S. K. Lando and A. K. Zvonkin, Meanders, Selecta Math. Soviet., 11 (1992), 117-144.


    H. Matano, Convergence of solutions of one-dimensional semilinear parabolic equations, J. Math. Kyoto Univ., 18 (1878), 221-227.


    H. Matano, Nonincrease of the lap-number of a solution for a one-dimensional semi-linear parabolic equation, J. Fac. Sci. Univ. Tokyo Sect. IA Math, 29 (1982), 401-441.


    H. Matano, Asymptotic behavior of solutions of semilinear heat equations on $S^1$, in "Nonlinear Diffusion Equations and their Equilibrium States II, 139-162" (eds. W.-M. Ni, L. A. Peletier, J. Serrin). Springer-Verlag, New York, (1988).doi: 10.1007/978-1-4613-9608-6_8.


    H. Matano and K.-I. Nakamura, The global attractor of semilinear parabolic equations on $S^1$, Discrete Contin. Dyn. Syst., 3 (1997), 1-24.


    K. Mischaikow, Conley index theory, in "Dynamical Systems (Montecatini Terme, 1994), 119-207" (eds. L. Arnold, K. Mischaikow and G. Raugel), Lecture Notes in Math., 1609, Springer, Berlin, (1995).doi: 10.1007/BFb0095240.


    Y. Miyamoto, On connecting orbits of semilinear parabolic equations on $S^1$, Documenta Math., 9 (2004), 435-469.


    N. Nadirashvili, Connecting orbits for nonlinear parabolic equations, Asian J. Math., 2 (1998), 135-140.


    A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations," Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983.doi: 10.1007/978-1-4612-5561-1.


    C. Ragazzo, Scalar autonomous second order ordinary differential equations, Preprint, (2010).doi: 10.1007/s12346-011-0063-8.


    G. Raugel, Global attractors in partial differential equations, in "Handbook of Dynamical Systems 2, 885-982" (ed. B. Fiedler), North-Holland, Amsterdam, (2002).doi: 10.1016/S1874-575X(02)80038-8.


    C. Rocha, Properties of the attractor of a scalar parabolic PDE, J. Dynam. Differential Equations, 3 (1991), 575-591.doi: 10.1007/BF01049100.


    C. Rocha, Bifurcations in discretized reaction-diffusion equations, Resenhas IME-USP, 1 (1994), 403-419.


    C. Rocha, Realization of period maps of planar Hamiltonian systems, J. Dynam. Differential Equations, 19 (2007), 571-591.doi: 10.1007/s10884-007-9081-2.


    B. Sandstede and B. Fiedler, Dynamics of periodically forced parabolic equations on the circle, Ergodic Theory Dynam. Systems, 12 (1992), 559-571.doi: 10.1017/S0143385700006933.


    R. Schaaf, "Global Solution Branches of Two Point Boundary Value Problems," Lect. Notes in Math, 1458, Springer-Verlag, New York, 1990.


    J. Smoller, "Shock Waves and Reaction-Diffusion Equations," Springer-Verlag, New York, 1983.


    C. Sturm, Sur une classe d'équations à différences partielles, J. Math. Pure Appl., 1 (1836), 373-444.


    M. Urabe, Relations between periods and amplitudes of periodic solutions of $\ddot x + g(x) = 0$, Funkcial. Ekvac., 6 (1964), 63-88.


    M. Wolfrum, Geometry of heteroclinic cascades in scalar parabolic differential equations, J. Dynam. Differential Equations, 14 (2002), 207-241.doi: 10.1023/A:1012967428328.


    M. Wolfrum, A sequence of order relations, encoding heteroclinic connections in scalar parabolic PDE, J. Differential Equations, 183 (2002), 56-78.doi: 10.1006/jdeq.2001.4114.


    J. A. Yorke, Periods of periodic solutions and the Lipschitz constant, Proc. Amer. Math. Soc., 22 (1969), 509-512.


    T. I. Zelenyak, Stabilization of solutions of boundary value problems for a second-order parabolic equation with one space variable, Differential Equations, 4 (1968), 34-45.

  • 加载中

Article Metrics

HTML views() PDF downloads(143) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint