-
Previous Article
Periodically growing solutions in a class of strongly monotone semiflows
- NHM Home
- This Issue
-
Next Article
Towards classification of multiple-end solutions to the Allen-Cahn equation in $\mathbb{R}^2$
Self-similar solutions in a sector for a quasilinear parabolic equation
1. | Department of Mathematics, Tongji University, Shanghai 200092 |
References:
[1] |
P. Brunovský, P. Poláčik and B. Sandstede, Convergence in general periodic parabolic equation in one space dimension, Nonlinear Anal., 18 (1992), 209-215.
doi: 10.1016/0362-546X(92)90059-N. |
[2] |
Y.-L. Chang, J.-S. Guo and Y. Kohsaka, On a two-point free boundary problem for a quasilinear parabolic equation, Asymptotic Anal., 34 (2003), 333-358. |
[3] |
X. Chen and J.-S. Guo, Motion by curvature of planar curves with end points moving freely on a line, Math. Ann., 350 (2011), 277-311.
doi: 10.1007/s00208-010-0558-7. |
[4] |
H.-H. Chern, J.-S. Guo and C.-P. Lo, The self-similar expanding curve for the curvature flow equation, Proc. Amer. Math. Soc., 131 (2003), 3191-3201.
doi: 10.1090/S0002-9939-03-07055-2. |
[5] |
G. Dong, Initial and nonlinear oblique boundary value problems for fully nonlinear parabolic equations, J. Partial Differential Equations, 1 (1988), 12-42. |
[6] |
A. Friedman, "Partial Differential Equations of Parabolic Type," Prentice-Hall, Inc., Englewood Cliffs, N.J. 1964. |
[7] |
M.-H. Giga, Y. Giga and H. Hontani, Selfsimilar expanding solutions in a sector for a crystalline flow, SIAM J. Math. Anal., 37 (2005), 1207-1226.
doi: 10.1137/040614372. |
[8] |
J.-S. Guo and B. Hu, A shrinking two-point free boundary problem for a quasilinear parabolic equation, Quart. Appl. Math., 64 (2006), 413-431. |
[9] |
J.-S. Guo and Y. Kohsaka, Self-similar solutions of two-point free boundary problem for heat equation, in "Nonlinear Diffusion Systems and Related Topics" RIMS Kokyuroku 1258, Kyoto University, (2002), 94-107. |
[10] |
D. Hilhorst, R. van der Hout, M. Mimura and I. Ohnishi, A mathematical study of the one-dimensional Keller and Rubinow model for Liesegang bands, J. Stat. Phys., 135 (2009), 107-132.
doi: 10.1007/s10955-009-9701-9. |
[11] |
J. B. Keller and S. I. Rubinow, Recurrent precipitation and Liesegang rings, J. Chem. Phys., 74 (1981), 5000-5007.
doi: 10.1063/1.441752. |
[12] |
Y. Kohsaka, Free boundary problem for quasilinear parabolic equation with fixed angle of contact to a boundary, Nonlinear Anal., 45 (2001), 865-894.
doi: 10.1016/S0362-546X(99)00422-8. |
[13] |
G. M. Lieberman, "Second Order Parabolic Differential Equations," World Scientific Publishing Co., Inc., NJ, 1996. |
[14] |
O. A. Ladyzhenskia, V. A. Solonnikov and N. N. Uraltseva, "Linear and Quasi-linear Equations of Parabolic Type," Amer. Math. Soc., Providence, Rhode Island, 1968. |
[15] |
B. Lou, H. Matano and K. I. Nakamura, Recurrent traveling waves in a two-dimensional saw-toothed cylinder and their average speed, preprint. |
[16] |
H. Matano, K. I. Nakamura and B. Lou, Periodic traveling waves in a two-dimensional cylinder with saw-toothed boundary and their homogenization limit, Netw. Heterog. Media, 1 (2006), 537-568.
doi: 10.3934/nhm.2006.1.537. |
[17] |
D. A. V. Stow, "Sedimentary Rocks in the Field: A Color Guide," Academic Press, 2005. |
[18] |
K. H. W. J. Ten Tusscher and A. V. Panfilov, Wave propagation in excitable media with randomly distributed obstacles, Multiscale Model. Simul., 3 (2005), 265-282.
doi: 10.1137/030602654. |
show all references
References:
[1] |
P. Brunovský, P. Poláčik and B. Sandstede, Convergence in general periodic parabolic equation in one space dimension, Nonlinear Anal., 18 (1992), 209-215.
doi: 10.1016/0362-546X(92)90059-N. |
[2] |
Y.-L. Chang, J.-S. Guo and Y. Kohsaka, On a two-point free boundary problem for a quasilinear parabolic equation, Asymptotic Anal., 34 (2003), 333-358. |
[3] |
X. Chen and J.-S. Guo, Motion by curvature of planar curves with end points moving freely on a line, Math. Ann., 350 (2011), 277-311.
doi: 10.1007/s00208-010-0558-7. |
[4] |
H.-H. Chern, J.-S. Guo and C.-P. Lo, The self-similar expanding curve for the curvature flow equation, Proc. Amer. Math. Soc., 131 (2003), 3191-3201.
doi: 10.1090/S0002-9939-03-07055-2. |
[5] |
G. Dong, Initial and nonlinear oblique boundary value problems for fully nonlinear parabolic equations, J. Partial Differential Equations, 1 (1988), 12-42. |
[6] |
A. Friedman, "Partial Differential Equations of Parabolic Type," Prentice-Hall, Inc., Englewood Cliffs, N.J. 1964. |
[7] |
M.-H. Giga, Y. Giga and H. Hontani, Selfsimilar expanding solutions in a sector for a crystalline flow, SIAM J. Math. Anal., 37 (2005), 1207-1226.
doi: 10.1137/040614372. |
[8] |
J.-S. Guo and B. Hu, A shrinking two-point free boundary problem for a quasilinear parabolic equation, Quart. Appl. Math., 64 (2006), 413-431. |
[9] |
J.-S. Guo and Y. Kohsaka, Self-similar solutions of two-point free boundary problem for heat equation, in "Nonlinear Diffusion Systems and Related Topics" RIMS Kokyuroku 1258, Kyoto University, (2002), 94-107. |
[10] |
D. Hilhorst, R. van der Hout, M. Mimura and I. Ohnishi, A mathematical study of the one-dimensional Keller and Rubinow model for Liesegang bands, J. Stat. Phys., 135 (2009), 107-132.
doi: 10.1007/s10955-009-9701-9. |
[11] |
J. B. Keller and S. I. Rubinow, Recurrent precipitation and Liesegang rings, J. Chem. Phys., 74 (1981), 5000-5007.
doi: 10.1063/1.441752. |
[12] |
Y. Kohsaka, Free boundary problem for quasilinear parabolic equation with fixed angle of contact to a boundary, Nonlinear Anal., 45 (2001), 865-894.
doi: 10.1016/S0362-546X(99)00422-8. |
[13] |
G. M. Lieberman, "Second Order Parabolic Differential Equations," World Scientific Publishing Co., Inc., NJ, 1996. |
[14] |
O. A. Ladyzhenskia, V. A. Solonnikov and N. N. Uraltseva, "Linear and Quasi-linear Equations of Parabolic Type," Amer. Math. Soc., Providence, Rhode Island, 1968. |
[15] |
B. Lou, H. Matano and K. I. Nakamura, Recurrent traveling waves in a two-dimensional saw-toothed cylinder and their average speed, preprint. |
[16] |
H. Matano, K. I. Nakamura and B. Lou, Periodic traveling waves in a two-dimensional cylinder with saw-toothed boundary and their homogenization limit, Netw. Heterog. Media, 1 (2006), 537-568.
doi: 10.3934/nhm.2006.1.537. |
[17] |
D. A. V. Stow, "Sedimentary Rocks in the Field: A Color Guide," Academic Press, 2005. |
[18] |
K. H. W. J. Ten Tusscher and A. V. Panfilov, Wave propagation in excitable media with randomly distributed obstacles, Multiscale Model. Simul., 3 (2005), 265-282.
doi: 10.1137/030602654. |
[1] |
Shota Sato, Eiji Yanagida. Forward self-similar solution with a moving singularity for a semilinear parabolic equation. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 313-331. doi: 10.3934/dcds.2010.26.313 |
[2] |
Shota Sato, Eiji Yanagida. Singular backward self-similar solutions of a semilinear parabolic equation. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 897-906. doi: 10.3934/dcdss.2011.4.897 |
[3] |
Marek Fila, Michael Winkler, Eiji Yanagida. Convergence to self-similar solutions for a semilinear parabolic equation. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 703-716. doi: 10.3934/dcds.2008.21.703 |
[4] |
Marco Cannone, Grzegorz Karch. On self-similar solutions to the homogeneous Boltzmann equation. Kinetic and Related Models, 2013, 6 (4) : 801-808. doi: 10.3934/krm.2013.6.801 |
[5] |
L. Olsen. Rates of convergence towards the boundary of a self-similar set. Discrete and Continuous Dynamical Systems, 2007, 19 (4) : 799-811. doi: 10.3934/dcds.2007.19.799 |
[6] |
Alain Hertzog, Antoine Mondoloni. Existence of a weak solution for a quasilinear wave equation with boundary condition. Communications on Pure and Applied Analysis, 2002, 1 (2) : 191-219. doi: 10.3934/cpaa.2002.1.191 |
[7] |
Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71 |
[8] |
Weronika Biedrzycka, Marta Tyran-Kamińska. Self-similar solutions of fragmentation equations revisited. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 13-27. doi: 10.3934/dcdsb.2018002 |
[9] |
K. T. Joseph, Philippe G. LeFloch. Boundary layers in weak solutions of hyperbolic conservation laws II. self-similar vanishing diffusion limits. Communications on Pure and Applied Analysis, 2002, 1 (1) : 51-76. doi: 10.3934/cpaa.2002.1.51 |
[10] |
Razvan Gabriel Iagar, Ana Isabel Muñoz, Ariel Sánchez. Self-similar blow-up patterns for a reaction-diffusion equation with weighted reaction in general dimension. Communications on Pure and Applied Analysis, 2022, 21 (3) : 891-925. doi: 10.3934/cpaa.2022003 |
[11] |
Yoshikazu Giga, Przemysław Górka, Piotr Rybka. Nonlocal spatially inhomogeneous Hamilton-Jacobi equation with unusual free boundary. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 493-519. doi: 10.3934/dcds.2010.26.493 |
[12] |
Rostislav Grigorchuk, Volodymyr Nekrashevych. Self-similar groups, operator algebras and Schur complement. Journal of Modern Dynamics, 2007, 1 (3) : 323-370. doi: 10.3934/jmd.2007.1.323 |
[13] |
Christoph Bandt, Helena PeÑa. Polynomial approximation of self-similar measures and the spectrum of the transfer operator. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4611-4623. doi: 10.3934/dcds.2017198 |
[14] |
Anna Chiara Lai, Paola Loreti. Self-similar control systems and applications to zygodactyl bird's foot. Networks and Heterogeneous Media, 2015, 10 (2) : 401-419. doi: 10.3934/nhm.2015.10.401 |
[15] |
Kin Ming Hui. Existence of self-similar solutions of the inverse mean curvature flow. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 863-880. doi: 10.3934/dcds.2019036 |
[16] |
D. G. Aronson. Self-similar focusing in porous media: An explicit calculation. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 1685-1691. doi: 10.3934/dcdsb.2012.17.1685 |
[17] |
G. A. Braga, Frederico Furtado, Vincenzo Isaia. Renormalization group calculation of asymptotically self-similar dynamics. Conference Publications, 2005, 2005 (Special) : 131-141. doi: 10.3934/proc.2005.2005.131 |
[18] |
Qiaolin He. Numerical simulation and self-similar analysis of singular solutions of Prandtl equations. Discrete and Continuous Dynamical Systems - B, 2010, 13 (1) : 101-116. doi: 10.3934/dcdsb.2010.13.101 |
[19] |
F. Berezovskaya, G. Karev. Bifurcations of self-similar solutions of the Fokker-Plank equations. Conference Publications, 2005, 2005 (Special) : 91-99. doi: 10.3934/proc.2005.2005.91 |
[20] |
Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168 |
2020 Impact Factor: 1.213
Tools
Metrics
Other articles
by authors
[Back to Top]