-
Previous Article
A short proof of the logarithmic Bramson correction in Fisher-KPP equations
- NHM Home
- This Issue
-
Next Article
A spatialized model of visual texture perception using the structure tensor formalism
Stochastic control of traffic patterns
1. | Bogolyubov Institute for Theoretical Physics, Metrologichna str. 14 B, 01413, Kiev |
2. | Department of Applied Mathematics and Statistics, University of the Basque Country, E-48080 Bilbao |
3. | AKAD University of Applied Sciences, D-70469 Stuttgart, Germany |
4. | Department of Mathematics and Computer Science & Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark |
5. | Toyota Central R&D Labs, Nagakute, Aichi, Japan |
6. | Department of Mathematics and Computer Science, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark, Denmark |
References:
[1] |
M. Abramowitz and I. Stegun, "Handbook of Mathematical Functions," Dover Publications, Inc., New York, 1972.
doi: 10.1119/1.1972842. |
[2] |
M. Bando, K. Hasebe, A. Nakayama, A. Shibata and Y. Sugiyama, Dynamical model of traffic congestion and numerical simulation, Phys. Rev. E, 51 (1995), 1035. |
[3] |
A. Bose and P. Ioannou, Mixed manual/semi-automated traffic: A macroscopic analysis, Trasp. Res., Part C: Emerg. Technol., 11 (2003), 439.
doi: 10.1016/j.trc.2002.04.001. |
[4] |
A. H. Cohen, P. J. Holmes and R. H. Rand, The nature of the coupling between segmental oscillators of the lamprey spinal generator for locomotion: A mathematical model, J. Math. Biol., 13 (1982), 345-369.
doi: 10.1007/BF00276069. |
[5] |
L. C. Davis, Effect of adaptive cruise control systems on traffic flow, Phys. Rev. E, 69 (2004), 066110.
doi: 10.1103/PhysRevE.69.066110. |
[6] |
Y. Gaididei, C. Gorria, R. Berkemer, A. Kawamoto, A. Kawamoto, T. Shiga, P. L. Christiansen, M. P. Sørensen and J. Starke, Traffic jam control by time-modulating the safety distance,, Submitted., ().
|
[7] |
Yu. B. Gaididei, R. Berkemer, J. G. Caputo, P. L. Christiansen, A. Kawamoto, T. Shiga, M. P. Sørensen and J. Starke, Analytical solutions of jam pattern formation on a ring for a class of optimal velocity traffic models, New Journal of Phys., 11 (2009), 073012 (1-19).
doi: 10.1088/1367-2630/11/7/073012. |
[8] |
Yu. B. Gaididei, R. Berkemer, C. Gorria, P. L. Christiansen, A. Kawamoto, T. Shiga, M. P. Sørensen and J. Starke, Complex spatiotemporal behavior in a chain of one-way nonlinearly coupled elements, Discrete and Continuous Dynamical Systems. Series S., 4 (2011), 1167-1179.
doi: 10.3934/dcdss.2011.4.1167. |
[9] |
C. W. Gardiner, "Handbook of Stochastic Method,'' 2nd ed. (Springer, Berlin), 1989.
doi: 10.1007/978-3-662-02377-8. |
[10] |
D. Helbing, Traffic and related self-driven many-particle systems, Rev. Modern Phys., 73 (2001), 1067-1141.
doi: 10.1103/RevModPhys.73.1067. |
[11] |
V. In, A. Kho, J. D. Neff, A. Palacios, P. Longhini and B. K. Meadows, Experimental observation of multifrequency patterns in arrays of coupled nonlinear oscillators, Phys. Rev. Lett., 91 (2003), 244101-244104.
doi: 10.1103/PhysRevLett.91.244101. |
[12] |
B. S. Kerner, "The physics of Traffic: Empirical Freeway Pattern Features, Engineering Applications, and Theory," Heidelberg: Springer, 2004. |
[13] |
B. S. Kerner, "Introduction to Modern Traffic Flow Theory and Control. The Long Road to Three-Phase Traffic Theory," Berlin: Springer, 2009. |
[14] |
S. Kikuchi, N. Uno and M. Tanaka, Impacts of shorter perception-reaction time of adapted cruise controlled vehicles on traffic flow and safety, J. Trans. Eng., 129 (2003), 146. |
[15] |
P. E. Kloeden and E. Platen, "Numerical Solution of Stochastic Differential Equations," 3rd ed., Springer, Berlin, 2004. |
[16] |
K. Konishi, H. Kokame and K. Hirata, Coupled map car-following model and its delayed-feedback control, Phys. Rev. E 60 4000; |
[17] |
H. K. Lee, H.-W. Lee and D. Kim, Macroscopic traffic models from microscopic car-following models, Phys. Rev. E, 64 (2001), 056126.
doi: 10.1103/PhysRevA.70.059902. |
[18] |
ChiYing Liang and Huei Peng, String stability analysis of adaptive cruise controlled vehicles, JSME Int. J., Ser. C, 43 (2000), 671. |
[19] |
P. Y. Li and A. Shrivastava, Traffic flow stability induced by constant time headway policy for adaptive cruise control vehicles, Transp. Res., Part C: Emerg. Technol., 10 (2002), 275. |
[20] |
S. Maerivoet and B. De Moor, Cellular automata models of road traffic, Phys. Reps., 419 (2005), 1. |
[21] |
T. Nagatani, The physics of traffic jams, Rep. Prog. Phys., 65 (2002), 1331-1386. |
[22] |
K. Nagel and M. Schreckenberg, A cellular automaton model for freeway traffic, J. Phys. I France, 2 (1992), 2221. |
[23] |
K. Nishinari, K. Sugawara, T. Kazama, A. Schadschneider and D. Chowdhury, Modelling of self-driven particles: Foraging ants and pedestrians, Physica A, 372 (2006), 132. |
[24] |
C. M. A. Pinto and M. Golubitsky, Central pattern generators for bipedal locomotion, J. Math. Biol., 53 (2006), 474-489.
doi: 10.1007/s00285-006-0021-2. |
[25] |
A. Schadschneider, D. Chowdhury and K. Nishinari, "Stochastic Transport in Complex Systems," Elsevier, 2011 |
[26] |
N. J. Suematsu, S. Nakata, A. Awazu and H. Nishimori, Collective behavior of inanimate boats, Phys. Rev. E, 81 (2010), 056210. |
[27] |
Yu. Sugiyama, M. Fukui, M. Kikuchi, K. Hasebe, A. Nakayama, K. Nishinari, Sh. Tadaki and S. Yukawa, Traffic jams without bottlenecks-experimental evidence for the physical mechanism of the formation of a jam, New Journal of Phys., 10 (2008), 1-7. 033001. |
[28] |
A. Takamatsu, R. Tanaka and T. Fujii, Hidden symmetry in chains of biological coupled oscillators, Phys. Rev. Lett., 92 (2004), 228102-228105. |
[29] |
A. Takamatsu, R. Tanaka, T. Nakagaki, T. Fujii and I. Endo, Spatiotemporal symmetry in rings of coupled biological oscillators of Physarum Plasmodial slime mold, Phys. Rev. Lett., 87 (2001), 078102-078105. |
[30] |
D. Tanaka, General chemotactic model of oscillators, Phys. Rev. Lett., 99 (2007), 134103. |
[31] |
D. E. Wolf, M. Schreckenberg and A. Bachem, "Traffic and Granular Flow," Word Scientific, Singapore, 1996. |
show all references
References:
[1] |
M. Abramowitz and I. Stegun, "Handbook of Mathematical Functions," Dover Publications, Inc., New York, 1972.
doi: 10.1119/1.1972842. |
[2] |
M. Bando, K. Hasebe, A. Nakayama, A. Shibata and Y. Sugiyama, Dynamical model of traffic congestion and numerical simulation, Phys. Rev. E, 51 (1995), 1035. |
[3] |
A. Bose and P. Ioannou, Mixed manual/semi-automated traffic: A macroscopic analysis, Trasp. Res., Part C: Emerg. Technol., 11 (2003), 439.
doi: 10.1016/j.trc.2002.04.001. |
[4] |
A. H. Cohen, P. J. Holmes and R. H. Rand, The nature of the coupling between segmental oscillators of the lamprey spinal generator for locomotion: A mathematical model, J. Math. Biol., 13 (1982), 345-369.
doi: 10.1007/BF00276069. |
[5] |
L. C. Davis, Effect of adaptive cruise control systems on traffic flow, Phys. Rev. E, 69 (2004), 066110.
doi: 10.1103/PhysRevE.69.066110. |
[6] |
Y. Gaididei, C. Gorria, R. Berkemer, A. Kawamoto, A. Kawamoto, T. Shiga, P. L. Christiansen, M. P. Sørensen and J. Starke, Traffic jam control by time-modulating the safety distance,, Submitted., ().
|
[7] |
Yu. B. Gaididei, R. Berkemer, J. G. Caputo, P. L. Christiansen, A. Kawamoto, T. Shiga, M. P. Sørensen and J. Starke, Analytical solutions of jam pattern formation on a ring for a class of optimal velocity traffic models, New Journal of Phys., 11 (2009), 073012 (1-19).
doi: 10.1088/1367-2630/11/7/073012. |
[8] |
Yu. B. Gaididei, R. Berkemer, C. Gorria, P. L. Christiansen, A. Kawamoto, T. Shiga, M. P. Sørensen and J. Starke, Complex spatiotemporal behavior in a chain of one-way nonlinearly coupled elements, Discrete and Continuous Dynamical Systems. Series S., 4 (2011), 1167-1179.
doi: 10.3934/dcdss.2011.4.1167. |
[9] |
C. W. Gardiner, "Handbook of Stochastic Method,'' 2nd ed. (Springer, Berlin), 1989.
doi: 10.1007/978-3-662-02377-8. |
[10] |
D. Helbing, Traffic and related self-driven many-particle systems, Rev. Modern Phys., 73 (2001), 1067-1141.
doi: 10.1103/RevModPhys.73.1067. |
[11] |
V. In, A. Kho, J. D. Neff, A. Palacios, P. Longhini and B. K. Meadows, Experimental observation of multifrequency patterns in arrays of coupled nonlinear oscillators, Phys. Rev. Lett., 91 (2003), 244101-244104.
doi: 10.1103/PhysRevLett.91.244101. |
[12] |
B. S. Kerner, "The physics of Traffic: Empirical Freeway Pattern Features, Engineering Applications, and Theory," Heidelberg: Springer, 2004. |
[13] |
B. S. Kerner, "Introduction to Modern Traffic Flow Theory and Control. The Long Road to Three-Phase Traffic Theory," Berlin: Springer, 2009. |
[14] |
S. Kikuchi, N. Uno and M. Tanaka, Impacts of shorter perception-reaction time of adapted cruise controlled vehicles on traffic flow and safety, J. Trans. Eng., 129 (2003), 146. |
[15] |
P. E. Kloeden and E. Platen, "Numerical Solution of Stochastic Differential Equations," 3rd ed., Springer, Berlin, 2004. |
[16] |
K. Konishi, H. Kokame and K. Hirata, Coupled map car-following model and its delayed-feedback control, Phys. Rev. E 60 4000; |
[17] |
H. K. Lee, H.-W. Lee and D. Kim, Macroscopic traffic models from microscopic car-following models, Phys. Rev. E, 64 (2001), 056126.
doi: 10.1103/PhysRevA.70.059902. |
[18] |
ChiYing Liang and Huei Peng, String stability analysis of adaptive cruise controlled vehicles, JSME Int. J., Ser. C, 43 (2000), 671. |
[19] |
P. Y. Li and A. Shrivastava, Traffic flow stability induced by constant time headway policy for adaptive cruise control vehicles, Transp. Res., Part C: Emerg. Technol., 10 (2002), 275. |
[20] |
S. Maerivoet and B. De Moor, Cellular automata models of road traffic, Phys. Reps., 419 (2005), 1. |
[21] |
T. Nagatani, The physics of traffic jams, Rep. Prog. Phys., 65 (2002), 1331-1386. |
[22] |
K. Nagel and M. Schreckenberg, A cellular automaton model for freeway traffic, J. Phys. I France, 2 (1992), 2221. |
[23] |
K. Nishinari, K. Sugawara, T. Kazama, A. Schadschneider and D. Chowdhury, Modelling of self-driven particles: Foraging ants and pedestrians, Physica A, 372 (2006), 132. |
[24] |
C. M. A. Pinto and M. Golubitsky, Central pattern generators for bipedal locomotion, J. Math. Biol., 53 (2006), 474-489.
doi: 10.1007/s00285-006-0021-2. |
[25] |
A. Schadschneider, D. Chowdhury and K. Nishinari, "Stochastic Transport in Complex Systems," Elsevier, 2011 |
[26] |
N. J. Suematsu, S. Nakata, A. Awazu and H. Nishimori, Collective behavior of inanimate boats, Phys. Rev. E, 81 (2010), 056210. |
[27] |
Yu. Sugiyama, M. Fukui, M. Kikuchi, K. Hasebe, A. Nakayama, K. Nishinari, Sh. Tadaki and S. Yukawa, Traffic jams without bottlenecks-experimental evidence for the physical mechanism of the formation of a jam, New Journal of Phys., 10 (2008), 1-7. 033001. |
[28] |
A. Takamatsu, R. Tanaka and T. Fujii, Hidden symmetry in chains of biological coupled oscillators, Phys. Rev. Lett., 92 (2004), 228102-228105. |
[29] |
A. Takamatsu, R. Tanaka, T. Nakagaki, T. Fujii and I. Endo, Spatiotemporal symmetry in rings of coupled biological oscillators of Physarum Plasmodial slime mold, Phys. Rev. Lett., 87 (2001), 078102-078105. |
[30] |
D. Tanaka, General chemotactic model of oscillators, Phys. Rev. Lett., 99 (2007), 134103. |
[31] |
D. E. Wolf, M. Schreckenberg and A. Bachem, "Traffic and Granular Flow," Word Scientific, Singapore, 1996. |
[1] |
Michael Herty, Christian Jörres, Albert N. Sandjo. Optimization of a model Fokker-Planck equation. Kinetic and Related Models, 2012, 5 (3) : 485-503. doi: 10.3934/krm.2012.5.485 |
[2] |
Virginia Giorno, Serena Spina. On the return process with refractoriness for a non-homogeneous Ornstein-Uhlenbeck neuronal model. Mathematical Biosciences & Engineering, 2014, 11 (2) : 285-302. doi: 10.3934/mbe.2014.11.285 |
[3] |
Sylvain De Moor, Luis Miguel Rodrigues, Julien Vovelle. Invariant measures for a stochastic Fokker-Planck equation. Kinetic and Related Models, 2018, 11 (2) : 357-395. doi: 10.3934/krm.2018017 |
[4] |
Yin Li, Xuerong Mao, Yazhi Song, Jian Tao. Optimal investment and proportional reinsurance strategy under the mean-reverting Ornstein-Uhlenbeck process and net profit condition. Journal of Industrial and Management Optimization, 2022, 18 (1) : 75-93. doi: 10.3934/jimo.2020143 |
[5] |
Michael Herty, Lorenzo Pareschi. Fokker-Planck asymptotics for traffic flow models. Kinetic and Related Models, 2010, 3 (1) : 165-179. doi: 10.3934/krm.2010.3.165 |
[6] |
Zeinab Karaki. Trend to the equilibrium for the Fokker-Planck system with an external magnetic field. Kinetic and Related Models, 2020, 13 (2) : 309-344. doi: 10.3934/krm.2020011 |
[7] |
Joseph G. Conlon, André Schlichting. A non-local problem for the Fokker-Planck equation related to the Becker-Döring model. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 1821-1889. doi: 10.3934/dcds.2019079 |
[8] |
Tomasz Komorowski, Łukasz Stȩpień. Kinetic limit for a harmonic chain with a conservative Ornstein-Uhlenbeck stochastic perturbation. Kinetic and Related Models, 2018, 11 (2) : 239-278. doi: 10.3934/krm.2018013 |
[9] |
Filomena Feo, Pablo Raúl Stinga, Bruno Volzone. The fractional nonlocal Ornstein-Uhlenbeck equation, Gaussian symmetrization and regularity. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3269-3298. doi: 10.3934/dcds.2018142 |
[10] |
Tomasz Komorowski, Lenya Ryzhik. Fluctuations of solutions to Wigner equation with an Ornstein-Uhlenbeck potential. Discrete and Continuous Dynamical Systems - B, 2012, 17 (3) : 871-914. doi: 10.3934/dcdsb.2012.17.871 |
[11] |
Marco Torregrossa, Giuseppe Toscani. On a Fokker-Planck equation for wealth distribution. Kinetic and Related Models, 2018, 11 (2) : 337-355. doi: 10.3934/krm.2018016 |
[12] |
José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic and Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401 |
[13] |
Annalisa Cesaroni, Matteo Novaga, Enrico Valdinoci. A symmetry result for the Ornstein-Uhlenbeck operator. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : 2451-2467. doi: 10.3934/dcds.2014.34.2451 |
[14] |
Fabio Camilli, Serikbolsyn Duisembay, Qing Tang. Approximation of an optimal control problem for the time-fractional Fokker-Planck equation. Journal of Dynamics and Games, 2021, 8 (4) : 381-402. doi: 10.3934/jdg.2021013 |
[15] |
Anton Arnold, Beatrice Signorello. Optimal non-symmetric Fokker-Planck equation for the convergence to a given equilibrium. Kinetic and Related Models, , () : -. doi: 10.3934/krm.2022009 |
[16] |
Helge Dietert, Josephine Evans, Thomas Holding. Contraction in the Wasserstein metric for the kinetic Fokker-Planck equation on the torus. Kinetic and Related Models, 2018, 11 (6) : 1427-1441. doi: 10.3934/krm.2018056 |
[17] |
Andreas Denner, Oliver Junge, Daniel Matthes. Computing coherent sets using the Fokker-Planck equation. Journal of Computational Dynamics, 2016, 3 (2) : 163-177. doi: 10.3934/jcd.2016008 |
[18] |
Ioannis Markou. Hydrodynamic limit for a Fokker-Planck equation with coefficients in Sobolev spaces. Networks and Heterogeneous Media, 2017, 12 (4) : 683-705. doi: 10.3934/nhm.2017028 |
[19] |
Manh Hong Duong, Yulong Lu. An operator splitting scheme for the fractional kinetic Fokker-Planck equation. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5707-5727. doi: 10.3934/dcds.2019250 |
[20] |
Giuseppe Toscani. A Rosenau-type approach to the approximation of the linear Fokker-Planck equation. Kinetic and Related Models, 2018, 11 (4) : 697-714. doi: 10.3934/krm.2018028 |
2020 Impact Factor: 1.213
Tools
Metrics
Other articles
by authors
[Back to Top]