-
Previous Article
Pattern forming instabilities driven by non-diffusive interactions
- NHM Home
- This Issue
-
Next Article
Wavespeed selection in the heterogeneous Fisher equation: Slowly varying inhomogeneity
Traveling fronts of pyramidal shapes in competition-diffusion systems
1. | Center for Partial Differential Equations, East China Normal University, Minhang, Shanghai, 200241, China |
2. | Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, 2-12-1-W8-38 Ookayama, Meguro-ku, Tokyo 152-8552 |
References:
[1] |
J.-S. Guo and X. Liang, The minimal speed of traveling fronts for the Lotka-Volterra competition system, J. Dynam. Differential Equations, 23 (2011), 353-363.
doi: 10.1007/s10884-011-9214-5. |
[2] |
J. K. Hale, "Ordinary Differential Equations," Wiley-Interscience, 1969. |
[3] |
F. Hamel, R. Monneau and J.-M. Roquejoffre, Existence and qualitative properties of multidimensional conical bistable fronts, Discrete Contin. Dyn. Syst., 13 (2005), 1069-1096.
doi: 10.3934/dcds.2005.13.1069. |
[4] |
F. Hamel, R. Monneau and J.-M. Roquejoffre, Asymptotic properties and classification of bistable fronts with Lipschitz level sets, Discrete Contin. Dyn. Syst., 14 (2006), 75-92. |
[5] |
M. Haragus and A. Scheel, Corner defects in almost planar interface propagation, Ann. I. H. Poincaré, 23 (2006), 283-329.
doi: 10.1016/j.anihpc.2005.03.003. |
[6] |
Y. Hosono, Traveling waves for a diffusive Lotka-Volterra competition model. I. Singular perturbations, Discrete Contin. Dyn. Syst. Ser. B, 3 (2003), 79-95.
doi: 10.3934/dcdsb.2003.3.79. |
[7] |
Y. Kan-on, Parameter dependence of propagation speed of travelling waves for competition-diffusion equations, SIAM J. Math. Anal., 26 (1995), 340-363.
doi: 10.1137/S0036141093244556. |
[8] |
Y. Kan-on and Q. Fang, Stability of monotone travelling waves for competition-diffusion equations, Japan J. Indust. Appl. Math., 13 (1996), 343-349.
doi: 10.1007/BF03167252. |
[9] |
Y. Kurokawa and M. Taniguchi, Multi-dimensional pyramidal traveling fronts in the Allen-Cahn equations, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 1031-1054.
doi: 10.1017/S0308210510001253. |
[10] |
H. Ninomiya and M. Taniguchi, Existence and global stability of traveling curved fronts in the Allen-Cahn equations, J. Differential Equations, 213 (2005), 204-233.
doi: 10.1016/j.jde.2004.06.011. |
[11] |
H. Ninomiya and M. Taniguchi, Global stability of traveling curved fronts in the Allen-Cahn equations, Discrete Contin. Dyn. Syst., 15 (2006), 819-832.
doi: 10.3934/dcds.2006.15.819. |
[12] |
M. H. Protter and H. F. Weinberger, "Maximum Principles in Differential Equations," Springer-Verlag, Berlin, 1984.
doi: 10.1007/978-1-4612-5282-5. |
[13] |
D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J., 21 (1972), 979-1000. |
[14] |
M. Taniguchi, Traveling fronts of pyramidal shapes in the Allen-Cahn equations, SIAM J. Math. Anal., 39 (2007), 319-344.
doi: 10.1137/060661788. |
[15] |
M. Taniguchi, The uniqueness and asymptotic stability of pyramidal traveling fronts in the Allen-Cahn equations, J. Differential Equations, 246 (2009), 2103-2130.
doi: 10.1016/j.jde.2008.06.037. |
[16] |
M. Taniguchi, Multi-dimensional traveling fronts in bistable reaction-diffusion equations, Discrete Contin. Dyn. Syst., 32 (2012), 1011-1046.
doi: 10.3934/dcds.2012.32.1011. |
[17] |
A. I. Volpert, V. A. Volpert and V. A. Volpert, "Traveling Wave Solutions of Parabolic Systems," Translations of Mathematical Monographs, 140, American Mathematical Society, Providence, RI}, 1994. |
[18] |
Z.-C. Wang, Traveling curved fronts in monotone bistable systems, Discrete Contin. Dyn. Syst., 32 (2012), 2339-2374.
doi: 10.3934/dcds.2012.32.2339. |
show all references
References:
[1] |
J.-S. Guo and X. Liang, The minimal speed of traveling fronts for the Lotka-Volterra competition system, J. Dynam. Differential Equations, 23 (2011), 353-363.
doi: 10.1007/s10884-011-9214-5. |
[2] |
J. K. Hale, "Ordinary Differential Equations," Wiley-Interscience, 1969. |
[3] |
F. Hamel, R. Monneau and J.-M. Roquejoffre, Existence and qualitative properties of multidimensional conical bistable fronts, Discrete Contin. Dyn. Syst., 13 (2005), 1069-1096.
doi: 10.3934/dcds.2005.13.1069. |
[4] |
F. Hamel, R. Monneau and J.-M. Roquejoffre, Asymptotic properties and classification of bistable fronts with Lipschitz level sets, Discrete Contin. Dyn. Syst., 14 (2006), 75-92. |
[5] |
M. Haragus and A. Scheel, Corner defects in almost planar interface propagation, Ann. I. H. Poincaré, 23 (2006), 283-329.
doi: 10.1016/j.anihpc.2005.03.003. |
[6] |
Y. Hosono, Traveling waves for a diffusive Lotka-Volterra competition model. I. Singular perturbations, Discrete Contin. Dyn. Syst. Ser. B, 3 (2003), 79-95.
doi: 10.3934/dcdsb.2003.3.79. |
[7] |
Y. Kan-on, Parameter dependence of propagation speed of travelling waves for competition-diffusion equations, SIAM J. Math. Anal., 26 (1995), 340-363.
doi: 10.1137/S0036141093244556. |
[8] |
Y. Kan-on and Q. Fang, Stability of monotone travelling waves for competition-diffusion equations, Japan J. Indust. Appl. Math., 13 (1996), 343-349.
doi: 10.1007/BF03167252. |
[9] |
Y. Kurokawa and M. Taniguchi, Multi-dimensional pyramidal traveling fronts in the Allen-Cahn equations, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 1031-1054.
doi: 10.1017/S0308210510001253. |
[10] |
H. Ninomiya and M. Taniguchi, Existence and global stability of traveling curved fronts in the Allen-Cahn equations, J. Differential Equations, 213 (2005), 204-233.
doi: 10.1016/j.jde.2004.06.011. |
[11] |
H. Ninomiya and M. Taniguchi, Global stability of traveling curved fronts in the Allen-Cahn equations, Discrete Contin. Dyn. Syst., 15 (2006), 819-832.
doi: 10.3934/dcds.2006.15.819. |
[12] |
M. H. Protter and H. F. Weinberger, "Maximum Principles in Differential Equations," Springer-Verlag, Berlin, 1984.
doi: 10.1007/978-1-4612-5282-5. |
[13] |
D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J., 21 (1972), 979-1000. |
[14] |
M. Taniguchi, Traveling fronts of pyramidal shapes in the Allen-Cahn equations, SIAM J. Math. Anal., 39 (2007), 319-344.
doi: 10.1137/060661788. |
[15] |
M. Taniguchi, The uniqueness and asymptotic stability of pyramidal traveling fronts in the Allen-Cahn equations, J. Differential Equations, 246 (2009), 2103-2130.
doi: 10.1016/j.jde.2008.06.037. |
[16] |
M. Taniguchi, Multi-dimensional traveling fronts in bistable reaction-diffusion equations, Discrete Contin. Dyn. Syst., 32 (2012), 1011-1046.
doi: 10.3934/dcds.2012.32.1011. |
[17] |
A. I. Volpert, V. A. Volpert and V. A. Volpert, "Traveling Wave Solutions of Parabolic Systems," Translations of Mathematical Monographs, 140, American Mathematical Society, Providence, RI}, 1994. |
[18] |
Z.-C. Wang, Traveling curved fronts in monotone bistable systems, Discrete Contin. Dyn. Syst., 32 (2012), 2339-2374.
doi: 10.3934/dcds.2012.32.2339. |
[1] |
Xiongxiong Bao, Wan-Tong Li, Zhi-Cheng Wang. Uniqueness and stability of time-periodic pyramidal fronts for a periodic competition-diffusion system. Communications on Pure and Applied Analysis, 2020, 19 (1) : 253-277. doi: 10.3934/cpaa.2020014 |
[2] |
Daozhou Gao, Xing Liang. A competition-diffusion system with a refuge. Discrete and Continuous Dynamical Systems - B, 2007, 8 (2) : 435-454. doi: 10.3934/dcdsb.2007.8.435 |
[3] |
Jong-Shenq Guo, Ying-Chih Lin. The sign of the wave speed for the Lotka-Volterra competition-diffusion system. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2083-2090. doi: 10.3934/cpaa.2013.12.2083 |
[4] |
Chaohong Pan, Hongyong Wang, Chunhua Ou. Invasive speed for a competition-diffusion system with three species. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3515-3532. doi: 10.3934/dcdsb.2021194 |
[5] |
Zhi-Cheng Wang, Hui-Ling Niu, Shigui Ruan. On the existence of axisymmetric traveling fronts in Lotka-Volterra competition-diffusion systems in ℝ3. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 1111-1144. doi: 10.3934/dcdsb.2017055 |
[6] |
Yang Wang, Xiong Li. Uniqueness of traveling front solutions for the Lotka-Volterra system in the weak competition case. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3067-3075. doi: 10.3934/dcdsb.2018300 |
[7] |
Yukio Kan-On. Structure on the set of radially symmetric positive stationary solutions for a competition-diffusion system. Conference Publications, 2013, 2013 (special) : 427-436. doi: 10.3934/proc.2013.2013.427 |
[8] |
E. C.M. Crooks, E. N. Dancer, Danielle Hilhorst. Fast reaction limit and long time behavior for a competition-diffusion system with Dirichlet boundary conditions. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 39-44. doi: 10.3934/dcdsb.2007.8.39 |
[9] |
Qian Guo, Xiaoqing He, Wei-Ming Ni. Global dynamics of a general Lotka-Volterra competition-diffusion system in heterogeneous environments. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6547-6573. doi: 10.3934/dcds.2020290 |
[10] |
Yuri Latushkin, Roland Schnaubelt, Xinyao Yang. Stable foliations near a traveling front for reaction diffusion systems. Discrete and Continuous Dynamical Systems - B, 2017, 22 (8) : 3145-3165. doi: 10.3934/dcdsb.2017168 |
[11] |
Lia Bronsard, Seong-A Shim. Long-time behavior for competition-diffusion systems via viscosity comparison. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 561-581. doi: 10.3934/dcds.2005.13.561 |
[12] |
Shuling Yan, Shangjiang Guo. Dynamics of a Lotka-Volterra competition-diffusion model with stage structure and spatial heterogeneity. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1559-1579. doi: 10.3934/dcdsb.2018059 |
[13] |
Danielle Hilhorst, Masato Iida, Masayasu Mimura, Hirokazu Ninomiya. Relative compactness in $L^p$ of solutions of some 2m components competition-diffusion systems. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 233-244. doi: 10.3934/dcds.2008.21.233 |
[14] |
Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035 |
[15] |
Xiaojie Hou, Yi Li. Traveling waves in a three species competition-cooperation system. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1103-1120. doi: 10.3934/cpaa.2017053 |
[16] |
Hongmei Cheng, Rong Yuan. Multidimensional stability of disturbed pyramidal traveling fronts in the Allen-Cahn equation. Discrete and Continuous Dynamical Systems - B, 2015, 20 (4) : 1015-1029. doi: 10.3934/dcdsb.2015.20.1015 |
[17] |
Zhen-Hui Bu, Zhi-Cheng Wang. Stability of pyramidal traveling fronts in the degenerate monostable and combustion equations Ⅰ. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2395-2430. doi: 10.3934/dcds.2017104 |
[18] |
Xiaojie Hou, Wei Feng. Traveling waves and their stability in a coupled reaction diffusion system. Communications on Pure and Applied Analysis, 2011, 10 (1) : 141-160. doi: 10.3934/cpaa.2011.10.141 |
[19] |
Radosław Kurek, Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. Ⅲ. Splitting of separatrices and chaos. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1955-1981. doi: 10.3934/dcds.2018079 |
[20] |
Hirofumi Izuhara, Shunsuke Kobayashi. Spatio-temporal coexistence in the cross-diffusion competition system. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 919-933. doi: 10.3934/dcdss.2020228 |
2021 Impact Factor: 1.41
Tools
Metrics
Other articles
by authors
[Back to Top]