-
Previous Article
Traveling fronts guided by the environment for reaction-diffusion equations
- NHM Home
- This Issue
-
Next Article
The degenerate and non-degenerate deep quench obstacle problem: A numerical comparison
Growth regulation and the insulin signaling pathway
1. | Department of Mathematics, Michigan State University, East Lansing, MI 48824, United States, United States |
2. | Department of Zoology, Michigan State University, East Lansing, MI 48824, United States |
References:
[1] |
Robert P. Erickson, Zhiyuan Jia, Steven P. Gross and Clare C. Yu, How molecular motors are arranged on a cargo is important for vesicular transport, PLoS Comput Biol., 7 (2011), 1-22. |
[2] |
Ahmed Essaghir, Nicolas Dif, Catherine Y. Marbehant, Paul J. Coffer and Jean-Baptiste Demoulin, The transcription of FOXO genes is stimulated by FOXO3 and repressed by growth factors, J. Biol. Chem., 284 (2009), 10334-10342.
doi: 10.1074/jbc.M808848200. |
[3] |
Geert J. Kops, Nancy D. de Ruiter, Alida M. Vries-Smits, David R. Powell, Johannes L. Bos and Boudewijn M. Burgering, Direct control of the Forkhead transcription factor AFX by protein kinase B, Nature, 398 (1999), 630-634. |
[4] |
Hitomi Matsuzaki, Hiroaki Daitoku, Mitsutoki Hatta, Keiji Tanaka and Akiyoshi Fukamizu, Insulin- induced phosphorylation of FKHR (Foxo1) targets to proteasomal degradation, Proc. Natl. Acad. Sci. U S A, 100 (2003), 11285-11290.
doi: 10.1073/pnas.1934283100. |
[5] |
Oscar Puig and Robert Tjian, Transcriptional feedback control of insulin receptor by dFOXO/FOXO1, Genes & Dev., 19 (2005), 2435-2446.
doi: 10.1101/gad.1340505. |
[6] |
Michael J. Quon and L. A. Campfield, A mathematical model and computer simulation study of insulin receptor regulation, J. Theor. Biol., 150 (1991), 59-72.
doi: 10.1016/S0022-5193(05)80475-8. |
[7] |
Michael J. Quon and L. A. Campfield, A mathematical model and computer simulation study of insulin-sensitive glucose transporter regulation, J. Theor. Biol., 150 (1991), 93-107.
doi: 10.1016/S0022-5193(05)80477-1. |
[8] |
Jaime Resino and Antonio García-Bellido, Drosophila genetic variants that change cell size and rate of proliferation affect cell communication and hence patterning, Mechanisms of Development, 121 (2004), 351-364.
doi: 10.1016/j.mod.2004.02.007. |
[9] |
Ahmad R. Sedaghat, Arthur Sherman and Michael J. Quon, A mathematical model of metabolic insulin signaling pathways, Am. J. Physiol. Endocrinol. Metab., 283 (2002), 84-101. |
[10] |
Alexander W. Shingleton, The regulation of organ size in drosophila, Organogenesis, 6 (2010), 1-13. |
[11] |
Graham R. Smith and Daryl P. Shanley, Modelling the response of FOXO transcription factor to multiple post-translational modifications made by ageing-related signalling pathways, PLoS ONE, 5 (2010), 1-18.
doi: 10.1371/journal.pone.0011092. |
[12] |
Huiyuan Tang, Martha S. B. Smith-Caldas, Michael V. Driscoll, Samy Salhadar and Alexander W. Shingleton, FOXO regulates organ-specific phenotypic plasticity in drosophila, PLoS Genet., 7 (2011), 1-12.
doi: 10.1371/journal.pgen.1002373. |
[13] |
Lars P. Van Der Heide, Marco F. M. Hoekman and Marten P. Smidt, The ins and outs of FoxO shuttling: Mechanism of FoxO translocation and transcriptional regulation, Biochem. J., 380 (2004), 297-309. |
show all references
References:
[1] |
Robert P. Erickson, Zhiyuan Jia, Steven P. Gross and Clare C. Yu, How molecular motors are arranged on a cargo is important for vesicular transport, PLoS Comput Biol., 7 (2011), 1-22. |
[2] |
Ahmed Essaghir, Nicolas Dif, Catherine Y. Marbehant, Paul J. Coffer and Jean-Baptiste Demoulin, The transcription of FOXO genes is stimulated by FOXO3 and repressed by growth factors, J. Biol. Chem., 284 (2009), 10334-10342.
doi: 10.1074/jbc.M808848200. |
[3] |
Geert J. Kops, Nancy D. de Ruiter, Alida M. Vries-Smits, David R. Powell, Johannes L. Bos and Boudewijn M. Burgering, Direct control of the Forkhead transcription factor AFX by protein kinase B, Nature, 398 (1999), 630-634. |
[4] |
Hitomi Matsuzaki, Hiroaki Daitoku, Mitsutoki Hatta, Keiji Tanaka and Akiyoshi Fukamizu, Insulin- induced phosphorylation of FKHR (Foxo1) targets to proteasomal degradation, Proc. Natl. Acad. Sci. U S A, 100 (2003), 11285-11290.
doi: 10.1073/pnas.1934283100. |
[5] |
Oscar Puig and Robert Tjian, Transcriptional feedback control of insulin receptor by dFOXO/FOXO1, Genes & Dev., 19 (2005), 2435-2446.
doi: 10.1101/gad.1340505. |
[6] |
Michael J. Quon and L. A. Campfield, A mathematical model and computer simulation study of insulin receptor regulation, J. Theor. Biol., 150 (1991), 59-72.
doi: 10.1016/S0022-5193(05)80475-8. |
[7] |
Michael J. Quon and L. A. Campfield, A mathematical model and computer simulation study of insulin-sensitive glucose transporter regulation, J. Theor. Biol., 150 (1991), 93-107.
doi: 10.1016/S0022-5193(05)80477-1. |
[8] |
Jaime Resino and Antonio García-Bellido, Drosophila genetic variants that change cell size and rate of proliferation affect cell communication and hence patterning, Mechanisms of Development, 121 (2004), 351-364.
doi: 10.1016/j.mod.2004.02.007. |
[9] |
Ahmad R. Sedaghat, Arthur Sherman and Michael J. Quon, A mathematical model of metabolic insulin signaling pathways, Am. J. Physiol. Endocrinol. Metab., 283 (2002), 84-101. |
[10] |
Alexander W. Shingleton, The regulation of organ size in drosophila, Organogenesis, 6 (2010), 1-13. |
[11] |
Graham R. Smith and Daryl P. Shanley, Modelling the response of FOXO transcription factor to multiple post-translational modifications made by ageing-related signalling pathways, PLoS ONE, 5 (2010), 1-18.
doi: 10.1371/journal.pone.0011092. |
[12] |
Huiyuan Tang, Martha S. B. Smith-Caldas, Michael V. Driscoll, Samy Salhadar and Alexander W. Shingleton, FOXO regulates organ-specific phenotypic plasticity in drosophila, PLoS Genet., 7 (2011), 1-12.
doi: 10.1371/journal.pgen.1002373. |
[13] |
Lars P. Van Der Heide, Marco F. M. Hoekman and Marten P. Smidt, The ins and outs of FoxO shuttling: Mechanism of FoxO translocation and transcriptional regulation, Biochem. J., 380 (2004), 297-309. |
[1] |
Wilhelm Schlag. Spectral theory and nonlinear partial differential equations: A survey. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 703-723. doi: 10.3934/dcds.2006.15.703 |
[2] |
Barbara Abraham-Shrauner. Exact solutions of nonlinear partial differential equations. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : 577-582. doi: 10.3934/dcdss.2018032 |
[3] |
Paul Bracken. Exterior differential systems and prolongations for three important nonlinear partial differential equations. Communications on Pure and Applied Analysis, 2011, 10 (5) : 1345-1360. doi: 10.3934/cpaa.2011.10.1345 |
[4] |
Mogtaba Mohammed, Mamadou Sango. Homogenization of nonlinear hyperbolic stochastic partial differential equations with nonlinear damping and forcing. Networks and Heterogeneous Media, 2019, 14 (2) : 341-369. doi: 10.3934/nhm.2019014 |
[5] |
Benjamin Boutin, Frédéric Coquel, Philippe G. LeFloch. Coupling techniques for nonlinear hyperbolic equations. Ⅱ. resonant interfaces with internal structure. Networks and Heterogeneous Media, 2021, 16 (2) : 283-315. doi: 10.3934/nhm.2021007 |
[6] |
Jaroslaw Smieja, Marzena Dolbniak. Sensitivity of signaling pathway dynamics to plasmid transfection and its consequences. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1207-1222. doi: 10.3934/mbe.2016039 |
[7] |
Paul Bracken. Connections of zero curvature and applications to nonlinear partial differential equations. Discrete and Continuous Dynamical Systems - S, 2014, 7 (6) : 1165-1179. doi: 10.3934/dcdss.2014.7.1165 |
[8] |
Seyedeh Marzieh Ghavidel, Wolfgang M. Ruess. Flow invariance for nonautonomous nonlinear partial differential delay equations. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2351-2369. doi: 10.3934/cpaa.2012.11.2351 |
[9] |
Ali Hamidoǧlu. On general form of the Tanh method and its application to nonlinear partial differential equations. Numerical Algebra, Control and Optimization, 2016, 6 (2) : 175-181. doi: 10.3934/naco.2016007 |
[10] |
Michela Eleuteri, Pavel Krejčí. An asymptotic convergence result for a system of partial differential equations with hysteresis. Communications on Pure and Applied Analysis, 2007, 6 (4) : 1131-1143. doi: 10.3934/cpaa.2007.6.1131 |
[11] |
Yves Achdou, Mathieu Laurière. On the system of partial differential equations arising in mean field type control. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 3879-3900. doi: 10.3934/dcds.2015.35.3879 |
[12] |
Shitao Liu, Roberto Triggiani. Determining damping and potential coefficients of an inverse problem for a system of two coupled hyperbolic equations. Part I: Global uniqueness. Conference Publications, 2011, 2011 (Special) : 1001-1014. doi: 10.3934/proc.2011.2011.1001 |
[13] |
Pep Charusanti, Xiao Hu, Luonan Chen, Daniel Neuhauser, Joseph J. DiStefano III. A mathematical model of BCR-ABL autophosphorylation, signaling through the CRKL pathway, and Gleevec dynamics in chronic myeloid leukemia. Discrete and Continuous Dynamical Systems - B, 2004, 4 (1) : 99-114. doi: 10.3934/dcdsb.2004.4.99 |
[14] |
Lijun Yi, Zhongqing Wang. Legendre spectral collocation method for second-order nonlinear ordinary/partial differential equations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 299-322. doi: 10.3934/dcdsb.2014.19.299 |
[15] |
Jiahui Zhu, Zdzisław Brzeźniak. Nonlinear stochastic partial differential equations of hyperbolic type driven by Lévy-type noises. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 3269-3299. doi: 10.3934/dcdsb.2016097 |
[16] |
B. S. Goh, W. J. Leong, Z. Siri. Partial Newton methods for a system of equations. Numerical Algebra, Control and Optimization, 2013, 3 (3) : 463-469. doi: 10.3934/naco.2013.3.463 |
[17] |
Jesse Berwald, Marian Gidea. Critical transitions in a model of a genetic regulatory system. Mathematical Biosciences & Engineering, 2014, 11 (4) : 723-740. doi: 10.3934/mbe.2014.11.723 |
[18] |
William Chad Young, Adrian E. Raftery, Ka Yee Yeung. A posterior probability approach for gene regulatory network inference in genetic perturbation data. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1241-1251. doi: 10.3934/mbe.2016041 |
[19] |
István Győri, Ferenc Hartung, Nahed A. Mohamady. Boundedness of positive solutions of a system of nonlinear delay differential equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 809-836. doi: 10.3934/dcdsb.2018044 |
[20] |
Herbert Koch. Partial differential equations with non-Euclidean geometries. Discrete and Continuous Dynamical Systems - S, 2008, 1 (3) : 481-504. doi: 10.3934/dcdss.2008.1.481 |
2020 Impact Factor: 1.213
Tools
Metrics
Other articles
by authors
[Back to Top]