September  2013, 8(3): 783-802. doi: 10.3934/nhm.2013.8.783

Spoofing cyber attack detection in probe-based traffic monitoring systems using mixed integer linear programming

1. 

King Abdullah University of Science and Technology, Electrical Engineering Department, Thuwal, Makkah 23955, KSA, Saudi Arabia, Saudi Arabia

2. 

University of California at Berkely, Electrical Engineering and Computer Sciences, Berkeley CA 94720-170

Received  September 2012 Revised  March 2013 Published  October 2013

Traffic sensing systems rely more and more on user generated (insecure) data, which can pose a security risk whenever the data is used for traffic flow control. In this article, we propose a new formulation for detecting malicious data injection in traffic flow monitoring systems by using the underlying traffic flow model. The state of traffic is modeled by the Lighthill-Whitham-Richards traffic flow model, which is a first order scalar conservation law with concave flux function. Given a set of traffic flow data generated by multiple sensors of different types, we show that the constraints resulting from this partial differential equation are mixed integer linear inequalities for a specific decision variable. We use this fact to pose the problem of detecting spoofing cyber attacks in probe-based traffic flow information systems as mixed integer linear feasibility problem. The resulting framework can be used to detect spoofing attacks in real time, or to evaluate the worst-case effects of an attack offline. A numerical implementation is performed on a cyber attack scenario involving experimental data from the Mobile Century experiment and the Mobile Millennium system currently operational in Northern California.
Citation: Edward S. Canepa, Alexandre M. Bayen, Christian G. Claudel. Spoofing cyber attack detection in probe-based traffic monitoring systems using mixed integer linear programming. Networks & Heterogeneous Media, 2013, 8 (3) : 783-802. doi: 10.3934/nhm.2013.8.783
References:
[1]

in "Proceedings of the 12th International Conference on Hybrid Systems: Computation and Control," Springer-Verlag, (2009), 31-45. doi: 10.1007/978-3-642-00602-9_3.  Google Scholar

[2]

In "Proceedings of the 13th ACM International Conference on Hybrid Systems: Computation and Control," ACM, (2010),161-170. doi: 10.1145/1755952.1755976.  Google Scholar

[3]

Systems and Control: Foundations and Applications, Birkhäuser, Boston, MA, 1991.  Google Scholar

[4]

SIAM Journal on Control and Optimization, 47 (2008), 2348-2380. doi: 10.1137/060659569.  Google Scholar

[5]

Birkhäuser, Boston, MA, 1997. doi: 10.1007/978-0-8176-4755-1.  Google Scholar

[6]

Communications in Partial Differential Equations, 15 (1990), 1713-1742. doi: 10.1080/03605309908820745.  Google Scholar

[7]

In "Proceedings of the 15th International IEEE Conference on Intelligent Transportation Systems", (2012), 832-839. Google Scholar

[8]

Birkhäuser, Boston, MA, 2001. doi: 10.1007/978-1-4612-0185-4.  Google Scholar

[9]

IEEE Transactions on Automatic Control, 55 (2010), 1142-1157. doi: 10.1109/TAC.2010.2041976.  Google Scholar

[10]

IEEE Transactions on Automatic Control, 55 (2010), 1158-1174. doi: 10.1109/TAC.2010.2045439.  Google Scholar

[11]

SIAM Journal on Control and Optimization, 49 (2011), 383-402. doi: 10.1137/090778754.  Google Scholar

[12]

Transactions of the American Mathematical Society, 277 (1983), 1-42. doi: 10.1090/S0002-9947-1983-0690039-8.  Google Scholar

[13]

Transportation Research, 28B (1994), 269-287. doi: 10.1016/0191-2615(94)90002-7.  Google Scholar

[14]

Transportation Research B, 39B (2005), 187-196. doi: 10.1016/j.trb.2004.04.003.  Google Scholar

[15]

Networks and Heterogeneous Media, 1 (2006), 601-619. doi: 10.3934/nhm.2006.1.601.  Google Scholar

[16]

SIAM Journal of Control and Optimization, 31 (1993), 257-272. doi: 10.1137/0331016.  Google Scholar

[17]

Transportation Research Part C: Emerging Technologies, 18 (2010), 568-583. doi: 10.1016/j.trc.2009.10.006.  Google Scholar

[18]

in "Proceedings of the 6th International Conference on Mobile Systems, Applications, and Services," ACM, (2008), 15-28. doi: 10.1145/1378600.1378604.  Google Scholar

[19]

Systems & Control Letters, 57 (2008), 750-758. doi: 10.1016/j.sysconle.2008.02.005.  Google Scholar

[20]

Transportation Research Part B: Methodological, 45 (2011), 1727-1748. doi: 10.1016/j.trb.2011.07.004.  Google Scholar

[21]

Highway Research Record, 99 (1965), 43-44. Google Scholar

[22]

Transporation Research B, 27B (1993), 281-313. Google Scholar

[23]

SIAM, Philadelphia, PA, 2000. doi: 10.1137/1.9780898717525.  Google Scholar

[24]

International Journal of Robust and Nonlinear Control, 16 (2006), 733-748. doi: 10.1002/rnc.1099.  Google Scholar

[25]

Applied Research Mathematics eXpress (ARMX), 1 (2010), 1-35. Google Scholar

[26]

, , ().   Google Scholar

[27]

, , ().   Google Scholar

show all references

References:
[1]

in "Proceedings of the 12th International Conference on Hybrid Systems: Computation and Control," Springer-Verlag, (2009), 31-45. doi: 10.1007/978-3-642-00602-9_3.  Google Scholar

[2]

In "Proceedings of the 13th ACM International Conference on Hybrid Systems: Computation and Control," ACM, (2010),161-170. doi: 10.1145/1755952.1755976.  Google Scholar

[3]

Systems and Control: Foundations and Applications, Birkhäuser, Boston, MA, 1991.  Google Scholar

[4]

SIAM Journal on Control and Optimization, 47 (2008), 2348-2380. doi: 10.1137/060659569.  Google Scholar

[5]

Birkhäuser, Boston, MA, 1997. doi: 10.1007/978-0-8176-4755-1.  Google Scholar

[6]

Communications in Partial Differential Equations, 15 (1990), 1713-1742. doi: 10.1080/03605309908820745.  Google Scholar

[7]

In "Proceedings of the 15th International IEEE Conference on Intelligent Transportation Systems", (2012), 832-839. Google Scholar

[8]

Birkhäuser, Boston, MA, 2001. doi: 10.1007/978-1-4612-0185-4.  Google Scholar

[9]

IEEE Transactions on Automatic Control, 55 (2010), 1142-1157. doi: 10.1109/TAC.2010.2041976.  Google Scholar

[10]

IEEE Transactions on Automatic Control, 55 (2010), 1158-1174. doi: 10.1109/TAC.2010.2045439.  Google Scholar

[11]

SIAM Journal on Control and Optimization, 49 (2011), 383-402. doi: 10.1137/090778754.  Google Scholar

[12]

Transactions of the American Mathematical Society, 277 (1983), 1-42. doi: 10.1090/S0002-9947-1983-0690039-8.  Google Scholar

[13]

Transportation Research, 28B (1994), 269-287. doi: 10.1016/0191-2615(94)90002-7.  Google Scholar

[14]

Transportation Research B, 39B (2005), 187-196. doi: 10.1016/j.trb.2004.04.003.  Google Scholar

[15]

Networks and Heterogeneous Media, 1 (2006), 601-619. doi: 10.3934/nhm.2006.1.601.  Google Scholar

[16]

SIAM Journal of Control and Optimization, 31 (1993), 257-272. doi: 10.1137/0331016.  Google Scholar

[17]

Transportation Research Part C: Emerging Technologies, 18 (2010), 568-583. doi: 10.1016/j.trc.2009.10.006.  Google Scholar

[18]

in "Proceedings of the 6th International Conference on Mobile Systems, Applications, and Services," ACM, (2008), 15-28. doi: 10.1145/1378600.1378604.  Google Scholar

[19]

Systems & Control Letters, 57 (2008), 750-758. doi: 10.1016/j.sysconle.2008.02.005.  Google Scholar

[20]

Transportation Research Part B: Methodological, 45 (2011), 1727-1748. doi: 10.1016/j.trb.2011.07.004.  Google Scholar

[21]

Highway Research Record, 99 (1965), 43-44. Google Scholar

[22]

Transporation Research B, 27B (1993), 281-313. Google Scholar

[23]

SIAM, Philadelphia, PA, 2000. doi: 10.1137/1.9780898717525.  Google Scholar

[24]

International Journal of Robust and Nonlinear Control, 16 (2006), 733-748. doi: 10.1002/rnc.1099.  Google Scholar

[25]

Applied Research Mathematics eXpress (ARMX), 1 (2010), 1-35. Google Scholar

[26]

, , ().   Google Scholar

[27]

, , ().   Google Scholar

[1]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[2]

Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209

[3]

Qi Lü, Xu Zhang. A concise introduction to control theory for stochastic partial differential equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021020

[4]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[5]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[6]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[7]

Dariusz Idczak. A Gronwall lemma for functions of two variables and its application to partial differential equations of fractional order. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021019

[8]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[9]

Vladimir Gaitsgory, Ilya Shvartsman. Linear programming estimates for Cesàro and Abel limits of optimal values in optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021102

[10]

Julian Koellermeier, Giovanni Samaey. Projective integration schemes for hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (2) : 353-387. doi: 10.3934/krm.2021008

[11]

Qing Liu, Bingo Wing-Kuen Ling, Qingyun Dai, Qing Miao, Caixia Liu. Optimal maximally decimated M-channel mirrored paraunitary linear phase FIR filter bank design via norm relaxed sequential quadratic programming. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1993-2011. doi: 10.3934/jimo.2020055

[12]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[13]

Benjamin Boutin, Frédéric Coquel, Philippe G. LeFloch. Coupling techniques for nonlinear hyperbolic equations. Ⅱ. resonant interfaces with internal structure. Networks & Heterogeneous Media, 2021, 16 (2) : 283-315. doi: 10.3934/nhm.2021007

[14]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[15]

Yueqiang Shang, Qihui Zhang. A subgrid stabilizing postprocessed mixed finite element method for the time-dependent Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3119-3142. doi: 10.3934/dcdsb.2020222

[16]

Sergey E. Mikhailov, Carlos F. Portillo. Boundary-Domain Integral Equations equivalent to an exterior mixed BVP for the variable-viscosity compressible Stokes PDEs. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1103-1133. doi: 10.3934/cpaa.2021009

[17]

Derrick Jones, Xu Zhang. A conforming-nonconforming mixed immersed finite element method for unsteady Stokes equations with moving interfaces. Electronic Research Archive, , () : -. doi: 10.3934/era.2021032

[18]

Jun Moon. Linear-quadratic mean-field type stackelberg differential games for stochastic jump-diffusion systems. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021026

[19]

Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192

[20]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (46)
  • HTML views (0)
  • Cited by (1)

[Back to Top]