Advanced Search
Article Contents
Article Contents

Traveling fronts guided by the environment for reaction-diffusion equations

Abstract Related Papers Cited by
  • This paper deals with the existence of traveling fronts for the reaction-diffusion equation: $$ \frac{\partial u}{\partial t} - \Delta u =h(u,y) \qquad t\in \mathbb{R}, \; x=(x_1,y)\in \mathbb{R}^N. $$ We first consider the case $h(u,y)=f(u)-\alpha g(y)u$ where $f$ is of KPP or bistable type and $\lim_{|y|\rightarrow +\infty}g(y)=+\infty$. This equation comes from a model in population dynamics in which there is spatial spreading as well as phenotypic mutation of a quantitative phenotypic trait that has a locally preferred value. The goal is to understand spreading and invasions in this heterogeneous context. We prove the existence of threshold value $\alpha_0$ and of a nonzero asymptotic profile (a stationary limiting solution) $V(y)$ if and only if $\alpha<\alpha_0$. When this condition is met, we prove the existence of a traveling front. This allows us to completely identify the behavior of the solution of the parabolic problem in the KPP case.
        We also study here the case where $h(y,u)=f(u)$ for $|y|\leq L_1$ and $h(y,u) \approx - \alpha u$ for $|y|>L_2\geq L_1$. This equation provides a general framework for a model of cortical spreading depressions in the brain. We prove the existence of traveling front if $L_1$ is large enough and the non-existence if $L_2$ is too small.
    Mathematics Subject Classification: Primary: 35K57, 35C07; Secondary: 35Q92.


    \begin{equation} \\ \end{equation}
  • [1]

    Matthieu Alfaro, Jérôme Coville and Gaël Raoul, Travelling waves in a nonlocal reaction-diffusion equation as a model for a population structured by a space variable and a phenotypical trait, arXiv:1211.3228, (2013).


    Tobias Back, Jochen G. Hirsch, Kristina Szabo and Achim Gass, Failure to demonstrate peri-infarct depolarizations by repetitive mr diffusion imaging in acute human stroke, Stroke, 31 (2000), 2901-2906.doi: 10.1161/01.STR.31.12.2901.


    H. Berestycki and P.-L. Lions, Une méthode locale pour l'existence de solutions positives de problèmes semi-linéaires elliptiques dans $R^N$, J. Analyse Math., 38 (1980), 144-187.


    H. Berestycki and L. Nirenberg, On the method of moving planes and the sliding method, Bol. Soc. Brasil. Mat. (N.S.), 22 (1991), 1-37.doi: 10.1007/BF01244896.


    Henri Berestycki, Le nombre de solutions de certains problèmes semi-linéaires elliptiques, J. Funct. Anal., 40 (1981), 1-29.doi: 10.1016/0022-1236(81)90069-0.


    Henri Berestycki and Guillemette Chapuisat, A numerical study of a non local reaction-diffusion equation in population dynamics, In preparation., (2013).


    Henri Berestycki and Guillemette Chapuisat, Propagation in a non homogeneous kpp equation arising in cancer modeling, In preparation, (2013).


    Henri Berestycki, Françcois Hamel and Hiroshi Matano, Bistable traveling waves passing an obstacle, Comm. Pures and Appl. Math., 62 (2009), 729-788.doi: 10.1002/cpa.20275.


    Henri Berestycki and François Hamel, Fronts and invasions in general domains, C. R. Math. Acad. Sci. Paris, 343 (2006), 711-716.doi: 10.1016/j.crma.2006.09.036.


    Henri Berestycki and François Hamel, Generalized travelling waves for reaction-diffusion equations, in "Perspectives in Nonlinear Partial Differential Equations", 446 of Contemp. Math., 101-123. Amer. Math. Soc., Providence, RI, (2007).doi: 10.1090/conm/446.


    Henri Berestycki and François Hamel, Generalized transition waves and their properties, Comm. Pure Appl. Math., to appear, (2012).doi: 10.1002/cpa.21389.


    Henri Berestycki and Pierre-Louis Lions, Some applications of the method of super and subsolutions, in "Bifurcation and Nonlinear Eigenvalue Problems (Proc., Session, Univ. Paris XIII, Villetaneuse, 1978)", 782 of Lecture Notes in Math., 16-41. Springer, Berlin, (1980).doi: 10.1007/BFb0090426.


    Henri Berestycki, Grégoire Nadin, Benoit Perthame and Lenya Ryzhik, The non-local Fisher-KPP equation: Travelling waves and steady states, Nonlinearity, 22 (2009), 2813-2844.doi: 10.1088/0951-7715/22/12/002.


    Henri Berestycki and Louis Nirenberg, Travelling fronts in cylinders, Ann. Inst. H. Poincaré Anal. Non Linéaire, 9 (1992), 497-572.


    Henri Berestycki and Luca Rossi, On the principal eigenvalue of elliptic operators in $\mathbbR^N$ and applications, J. Eur. Math. Soc. (JEMS), 8 (2006), 195-215.doi: 10.4171/JEMS/47.


    Henri Berestycki and Luca Rossi, Reaction-diffusion equations for population dynamics with forced speed. I. The case of the whole space, Discrete Contin. Dyn. Syst., 21 (2008), 41-67.doi: 10.3934/dcds.2008.21.41.


    Guillemette Chapuisat, Existence and nonexistence of curved front solution of a biological equation, J. Differential Equations, 236 (2007), 237-279.doi: 10.1016/j.jde.2007.01.021.


    Guillemette Chapuisat and Emmanuel Grenier, Existence and nonexistence of traveling wave solutions for a bistable reaction-diffusion equation in an infinite cylinder whose diameter is suddenly increased, Comm. Partial Differential Equations, 30 (2005), 1805-1816.doi: 10.1080/03605300500300006.


    Guillemette Chapuisat, Emmanuel Grenier, Marie-Aim\'ee Dronne, Marc Hommel and Jean-Pierre Boissel, A global model of ischemic stroke with stress on spreading depression, Progress in Biophysics and Molecular Biology, 97 (2008), 4-27.doi: 10.1016/j.pbiomolbio.2007.10.004.


    Guillemette Chapuisat and Romain Joly, Asymptotic profiles for a traveling front solution of a biological equation, Math. Models Methods Appl. Sci., 21 (2011), 2155-2177.doi: 10.1142/S0218202511005696.


    Jacques De Keyser, Geert Sulter and Paul G. Luiten, Clinical trials with neuroprotective drugs in acute ischaemic stroke: are we doing the right thing?, Trends Neurosci., 22 (1999), 535-540.


    Laurent Desvillettes, Régis Ferrières and Céline Prevost, Infinite dimensional reaction-diffusion for population dynamics, Prépublication du CMLA No. 2003-04, (2003).


    Lawrence C. Evans, "Partial Differential Equations," 19 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 1998.


    Laurent Excoffier, Matthieu Foll and Rémy J Petit, Genetic consequences of range expansions, Annual Review of Ecology Evolution and Systematics, 40 (2009), 481-501.doi: 10.1146/annurev.ecolsys.39.110707.173414.


    Ido Filin, Robert D. Holt and Michael Barfield, The relation of density regulation to habitat specialization, evolution of a species' range, and the dynamics of biological invasions, Am. Nat., 172 (2008), 233-247.doi: 10.1086/589459.


    Ali Gorji, Dieter Scheller, Heidrun Straub, Frank Tegtmeier, Rüdiger Köhling, Jörg Michael Höhling, Ingrid Tuxhorn, Alois Ebner, Peter Wolf, Hans Werner Panneck, Falk Oppel and Erwin Josef Speckmann, Spreading depression in human neocortical slices, Brain Res., 906 (2001), 74-83.doi: 10.1016/S0006-8993(01)02557-4.


    Oskar Hallatschek, Pascal Hersen, Sharad Ramanathan and David R. Nelson, Genetic drift at expanding frontiers promotes gene segregation, Proceedings of the National Academy of Sciences, 104 (2007), 19926-19930.doi: 10.1073/pnas.0710150104.


    Oskar Hallatschek and David R. Nelson, Gene surfing in expanding populations, Theoretical Population Biology, 73 (2008), 158-170.doi: 10.1016/j.tpb.2007.08.008.


    Oskar Hallatschek and David R. Nelson, Life at the front of an expanding population, Evolution, 64 (2010), 193-206.doi: 10.1111/j.1558-5646.2009.00809.x.


    Robert D. Holt, Michael Barfield, Ido Filin and Samantha Forde, Predation and the evolutionary dynamics of species ranges, Am. Nat., 178 (2011), 488-500.doi: 10.1086/661909.


    Mark Kirkpatrick and Nicholas H. Barton, Evolution of a species' range, Am. Nat., 150 (1997), 1-23.doi: 10.1086/286054.


    Jean-François Mallordy and Jean-Michel Roquejoffre, A parabolic equation of the KPP type in higher dimensions, SIAM J. Math. Anal., 26 (1995), 1-20.doi: 10.1137/S0036141093246105.


    Hiroshi Matano, Asymptotic behavior and stability of solutions of semilinear diffusion equations, Publ. Res. Inst. Math. Sci., 15 (1979), 401-454.doi: 10.2977/prims/1195188180.


    Hiroshi Matano, Traveling waves in spatially inhomogeneous diffusive media - the non-periodic case, Preprint, 2012.


    Avraham Mayevsky, Avi Doron, Tamar Manor, Sigal Meilin, Nili Zarchin and George E. Ouaknine, Cortical spreading depression recorded from the human brain using a multiparmetric monitoring system, Brain Res., 740 (1996), 268-274.doi: 10.1016/S0006-8993(96)00874-8.


    Maiken Nedergaard, Arthur J. Cooper and Steven A. Goldman, Gap junctions are required for the propagation of spreading depression, J. Neurobiol., 28 (1995), 433-444.doi: 10.1002/neu.480280404.


    James Nolen, Jean-Michel Roquejoffre, Lenya Ryzhik and Andrej Zlatoš, Existence and non-existence of fisher-kpp transition fronts, Arch. Ration. Mech. Anal., to appear, 2012.doi: 10.1007/s00205-011-0449-4.


    L. A. Peletier and James Serrin, Uniqueness of nonnegative solutions of semilinear equations in $R^n$, J. Differential Equations, 61 (1986), 380-397.doi: 10.1016/0022-0396(86)90112-9.


    Cristina Pocci, Ayman Moussa, Florence Hubert and Guillemette Chapuisat., Numerical study of the stopping of aura during migraine, in "CEMRACS (2009): Mathematical Modelling in Medicine", 30 of ESAIM Proc., 44-52. EDP Sci., Les Ulis, (2010).doi: 10.1051/proc/2010005.


    Paul H. RabinowitzPairs of positive solutions of nonlinear elliptic partial differential equations, Indiana Univ. Math. J., 23 (1973/74), 173-186. doi: 10.1512/iumj.1973.23.23014.


    Lionel Roques, Jimmy Garnier, François Hamel and Etienne K. Klein, Allee effect promotes diversity in traveling waves of colonization, Proceedings of the National Academy of Sciences, 109 (2012), 8828-8833.doi: 10.1073/pnas.1201695109.


    Laurent Schwartz, "Analyse Hilbertienne," Collection Méthodes. Hermann, Paris, 1979.


    Bruno Shapiro, Osmotic forces and gap junctions in spreading depression: A computational model, J. Comput. Neurosci., 10 (2001), 99-120.


    Wenxian Shen, Dynamical systems and traveling waves in almost periodic structures, J. Differential Equations, 169 (2001), 493-548. Special issue in celebration of Jack K. Hale's 70th birthday, Part 4 (Atlanta, GA/Lisbon, 1998).doi: 10.1006/jdeq.2000.3906.


    George G. Somjen, "Ions in the Brain: Normal Function, Seizures, and Stroke," Oxford University Press, New York, 2004.


    Anthony J. Strong, Martin Fabricius, Martyn G. Boutelle, Stuart J. Hibbins, Sarah E. Hopwood, Robina Jones, Mark C. Parkin and Martin Lauritzen, Spreading and synchronous depressions of cortical activity in acutely injured human brain, Stroke, 33 (2002), 2738-2743.doi: 10.1161/01.STR.0000043073.69602.09.


    Henry C. Tuckwell, Predictions and properties of a model of potassium and calcium ion movements during spreading cortical depression, Int. J. Neurosci., 10 (1980), 145-164.doi: 10.3109/00207458009160493.


    José M. Vega, Travelling wavefronts of reaction-diffusion equations in cylindrical domains, Comm. Partial Differential Equations, 18 (1993), 505-531.doi: 10.1080/03605309308820939.


    Marcel O. Vlad, L. Luca Cavalli-Sforza and John Ross, Enhanced (hydrodynamic) transport induced by population growth in reactiondiffusion systems with application to population genetics, Proceedings of the National Academy of Sciences, 101 (2004), 10249-10253.


    Andrej Zlatoš, Generalized traveling waves in disordered media: Existence, uniqueness, and stability, Preprint, 2012.

  • 加载中

Article Metrics

HTML views() PDF downloads(125) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint