-
Previous Article
Probability hypothesis density filtering for real-time traffic state estimation and prediction
- NHM Home
- This Issue
-
Next Article
Spoofing cyber attack detection in probe-based traffic monitoring systems using mixed integer linear programming
Markov Chain Monte Carlo based inverse modeling of traffic flows using GPS data
1. | Microsoft, 1065 La Avenida St, Mountain View, CA 94043, United States |
2. | University of Illinois at Urbana-Champaign, 1203 Newmark Civil Engineering Laboratory, 205 N. Mathews Ave, Urbana, IL 61801, United States |
References:
[1] |
T. Bellemans, B. D. Schutter and B. D. Moor, Model predictive control with repeated model fitting for ramp metering,, in, (2002), 236.
doi: 10.1109/ITSC.2002.1041221. |
[2] |
T. Bellemans, B. D. Schutter, G. Wets and B. D. Moor, Model predictive control for ramp metering combined with extended Kalman filter-based traffic state estimation,, in, (2006), 406.
doi: 10.1109/ITSC.2006.1706775. |
[3] |
S. Blandin, A. Couque, A. Bayen and D. Work, On sequential data assimilation for scalar macroscopic traffic flow models,, Physica D: Nonlinear Phenomena, 241 (2012), 1421. Google Scholar |
[4] |
G. Bretti and B. Piccoli, A tracking algorithm for car paths on road networks,, SIAM Journal on Applied Dynamical Systems, 7 (2008), 510.
doi: 10.1137/070697768. |
[5] |
R. M. Colombo and A. Marson, A Hölder continuous ode related to traffic flow,, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 133 (2003), 759.
doi: 10.1017/S0308210500002663. |
[6] |
M. Cremer and M. Papageorgiou, Parameter identification for a traffic flow model,, Automatica J. IFAC, 17 (1981), 837.
doi: 10.1016/0005-1098(81)90071-6. |
[7] |
E. Cristiani, C. de Fabritiis and B. Piccoli, A fluid dynamic approach for traffic forecast from mobile sensor data,, Communications in Applied and Industrial Mathematics, 1 (2010), 54.
|
[8] |
G. Dervisoglu, G. Gomes, J. Kwon, R. Horowitz and P. Varaiya, Automatic calibration of the fundamental diagram and empirical observations on capacity,, in, (2009). Google Scholar |
[9] |
M. Garavello and B. Piccoli, "Traffic Flow on Networks,", Conservation laws models. AIMS Series on Applied Mathematics, (2006).
|
[10] |
W. Gilks, S. Richardson and D. Spegelhalter, "Markov Chain Monte Carlo in Practice,", Interdisciplinary Statistics. Chapman & Hall, (1996).
|
[11] |
S. Godunov, A difference method for the numerical calculation of discontinuous solutions of hydrodynamic equations,, (Russian) Mat. Sb. (N. S.), 47 (1959), 271.
|
[12] |
A. Hegyi, D. Girimonte, R. Babŭska and B. D. Schutter, A comparison of filter configurations for freeway traffic state estimation,, in, (2006), 1029.
doi: 10.1109/ITSC.2006.1707357. |
[13] |
J. Kaipio and E. Somersalo, "Statistical and Computational Inverse Problems,", Springer, (2005). Google Scholar |
[14] |
J. Lebacque, The Godunov scheme and what it means for first order traffic flow models,, in, (1996), 647. Google Scholar |
[15] |
R. J. LeVeque, "Numerical Methods for Conservation Laws,", Second edition. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, (1992).
doi: 10.1007/978-3-0348-8629-1. |
[16] |
M. Lighthill and G. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads,, Proc. Roy. Soc. London. Ser. A. 229 (1955), 229 (1955), 317.
doi: 10.1098/rspa.1955.0089. |
[17] |
J. V. Lint, S. Hoogendoorn and A. Hegyi, Dual EKF state and parameter estimation in multi-class first-order traffic flow models,, in, (2008). Google Scholar |
[18] |
X.-Y. Lu, P. Varaiya and R. Horowitz, Fundamental diagram modeling and analysis based on NGSIM data,, in, (2009). Google Scholar |
[19] |
L. Mihaylova, R. Boel and A. Hegyi, Freeway traffic estimation within particle filtering framework,, Automatica J. IFAC, 43 (2007), 290.
doi: 10.1016/j.automatica.2006.08.023. |
[20] |
L. Munoz, X. Sun, D. Sun, G. Gomez and R. Horowitz, Methodological calibration of the cell transmission model,, in, 1 (2004), 798. Google Scholar |
[21] |
A. Muralidharan, G. Dervisoglu and R. Horowitz, Probabilistic graphical models of fundamental diagram parameters for freeway traffic simulations,, in, (2011).
doi: 10.3141/2249-10. |
[22] |
P. I. Richards, Shock waves on the highway,, Operations Research, 4 (1956), 42.
doi: 10.1287/opre.4.1.42. |
[23] |
S. Smulders, Control of freeway traffic flow by variable speed signs,, Transportation Research Part B: Methodological, 24 (1990), 111.
doi: 10.1016/0191-2615(90)90023-R. |
[24] |
Transportation Research Board, "HCM 2010: Highway Capacity Manual,", (2010)., (2010). Google Scholar |
[25] | |
[26] |
Y. Wang, M. Papageorgiou and A. Messmer, RENAISSANCE - A unified macroscopic model-based approach to real-time freeway network traffic surveillance,, Transportation Research Part C: Emerging Technologies, 14 (2006), 190.
doi: 10.1016/j.trc.2006.06.001. |
[27] |
Y. Wang, M. Papageorgiou and A. Messmer, Real-time freeway traffic state estimation based on extended kalman filter: A case study,, Transportation Science, 41 (2007), 167.
doi: 10.1287/trsc.1070.0194. |
[28] |
D. Work, S. Blandin, O.-P. Tossavainen, B. Piccoli and A. Bayen, A traffic model for velocity data assimilation,, Appl. Math. Res. Express. AMRX, 2010 (2010), 1.
|
[29] |
J. Yan, Parameter identification of freeway traffic flow model and adaptive ramp metering,, in, (2009), 235.
doi: 10.1109/ISECS.2009.39. |
show all references
References:
[1] |
T. Bellemans, B. D. Schutter and B. D. Moor, Model predictive control with repeated model fitting for ramp metering,, in, (2002), 236.
doi: 10.1109/ITSC.2002.1041221. |
[2] |
T. Bellemans, B. D. Schutter, G. Wets and B. D. Moor, Model predictive control for ramp metering combined with extended Kalman filter-based traffic state estimation,, in, (2006), 406.
doi: 10.1109/ITSC.2006.1706775. |
[3] |
S. Blandin, A. Couque, A. Bayen and D. Work, On sequential data assimilation for scalar macroscopic traffic flow models,, Physica D: Nonlinear Phenomena, 241 (2012), 1421. Google Scholar |
[4] |
G. Bretti and B. Piccoli, A tracking algorithm for car paths on road networks,, SIAM Journal on Applied Dynamical Systems, 7 (2008), 510.
doi: 10.1137/070697768. |
[5] |
R. M. Colombo and A. Marson, A Hölder continuous ode related to traffic flow,, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 133 (2003), 759.
doi: 10.1017/S0308210500002663. |
[6] |
M. Cremer and M. Papageorgiou, Parameter identification for a traffic flow model,, Automatica J. IFAC, 17 (1981), 837.
doi: 10.1016/0005-1098(81)90071-6. |
[7] |
E. Cristiani, C. de Fabritiis and B. Piccoli, A fluid dynamic approach for traffic forecast from mobile sensor data,, Communications in Applied and Industrial Mathematics, 1 (2010), 54.
|
[8] |
G. Dervisoglu, G. Gomes, J. Kwon, R. Horowitz and P. Varaiya, Automatic calibration of the fundamental diagram and empirical observations on capacity,, in, (2009). Google Scholar |
[9] |
M. Garavello and B. Piccoli, "Traffic Flow on Networks,", Conservation laws models. AIMS Series on Applied Mathematics, (2006).
|
[10] |
W. Gilks, S. Richardson and D. Spegelhalter, "Markov Chain Monte Carlo in Practice,", Interdisciplinary Statistics. Chapman & Hall, (1996).
|
[11] |
S. Godunov, A difference method for the numerical calculation of discontinuous solutions of hydrodynamic equations,, (Russian) Mat. Sb. (N. S.), 47 (1959), 271.
|
[12] |
A. Hegyi, D. Girimonte, R. Babŭska and B. D. Schutter, A comparison of filter configurations for freeway traffic state estimation,, in, (2006), 1029.
doi: 10.1109/ITSC.2006.1707357. |
[13] |
J. Kaipio and E. Somersalo, "Statistical and Computational Inverse Problems,", Springer, (2005). Google Scholar |
[14] |
J. Lebacque, The Godunov scheme and what it means for first order traffic flow models,, in, (1996), 647. Google Scholar |
[15] |
R. J. LeVeque, "Numerical Methods for Conservation Laws,", Second edition. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, (1992).
doi: 10.1007/978-3-0348-8629-1. |
[16] |
M. Lighthill and G. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads,, Proc. Roy. Soc. London. Ser. A. 229 (1955), 229 (1955), 317.
doi: 10.1098/rspa.1955.0089. |
[17] |
J. V. Lint, S. Hoogendoorn and A. Hegyi, Dual EKF state and parameter estimation in multi-class first-order traffic flow models,, in, (2008). Google Scholar |
[18] |
X.-Y. Lu, P. Varaiya and R. Horowitz, Fundamental diagram modeling and analysis based on NGSIM data,, in, (2009). Google Scholar |
[19] |
L. Mihaylova, R. Boel and A. Hegyi, Freeway traffic estimation within particle filtering framework,, Automatica J. IFAC, 43 (2007), 290.
doi: 10.1016/j.automatica.2006.08.023. |
[20] |
L. Munoz, X. Sun, D. Sun, G. Gomez and R. Horowitz, Methodological calibration of the cell transmission model,, in, 1 (2004), 798. Google Scholar |
[21] |
A. Muralidharan, G. Dervisoglu and R. Horowitz, Probabilistic graphical models of fundamental diagram parameters for freeway traffic simulations,, in, (2011).
doi: 10.3141/2249-10. |
[22] |
P. I. Richards, Shock waves on the highway,, Operations Research, 4 (1956), 42.
doi: 10.1287/opre.4.1.42. |
[23] |
S. Smulders, Control of freeway traffic flow by variable speed signs,, Transportation Research Part B: Methodological, 24 (1990), 111.
doi: 10.1016/0191-2615(90)90023-R. |
[24] |
Transportation Research Board, "HCM 2010: Highway Capacity Manual,", (2010)., (2010). Google Scholar |
[25] | |
[26] |
Y. Wang, M. Papageorgiou and A. Messmer, RENAISSANCE - A unified macroscopic model-based approach to real-time freeway network traffic surveillance,, Transportation Research Part C: Emerging Technologies, 14 (2006), 190.
doi: 10.1016/j.trc.2006.06.001. |
[27] |
Y. Wang, M. Papageorgiou and A. Messmer, Real-time freeway traffic state estimation based on extended kalman filter: A case study,, Transportation Science, 41 (2007), 167.
doi: 10.1287/trsc.1070.0194. |
[28] |
D. Work, S. Blandin, O.-P. Tossavainen, B. Piccoli and A. Bayen, A traffic model for velocity data assimilation,, Appl. Math. Res. Express. AMRX, 2010 (2010), 1.
|
[29] |
J. Yan, Parameter identification of freeway traffic flow model and adaptive ramp metering,, in, (2009), 235.
doi: 10.1109/ISECS.2009.39. |
[1] |
Caterina Balzotti, Simone Göttlich. A two-dimensional multi-class traffic flow model. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020034 |
[2] |
Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113 |
[3] |
Dominique Chapelle, Philippe Moireau, Patrick Le Tallec. Robust filtering for joint state-parameter estimation in distributed mechanical systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 65-84. doi: 10.3934/dcds.2009.23.65 |
[4] |
Tin Phan, Bruce Pell, Amy E. Kendig, Elizabeth T. Borer, Yang Kuang. Rich dynamics of a simple delay host-pathogen model of cell-to-cell infection for plant virus. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 515-539. doi: 10.3934/dcdsb.2020261 |
[5] |
Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347 |
[6] |
Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020339 |
[7] |
H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020433 |
[8] |
Xin Zhao, Tao Feng, Liang Wang, Zhipeng Qiu. Threshold dynamics and sensitivity analysis of a stochastic semi-Markov switched SIRS epidemic model with nonlinear incidence and vaccination. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021010 |
[9] |
Mahir Demir, Suzanne Lenhart. A spatial food chain model for the Black Sea Anchovy, and its optimal fishery. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 155-171. doi: 10.3934/dcdsb.2020373 |
[10] |
Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234 |
[11] |
Angelica Pachon, Federico Polito, Costantino Ricciuti. On discrete-time semi-Markov processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1499-1529. doi: 10.3934/dcdsb.2020170 |
[12] |
Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137 |
[13] |
Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020170 |
[14] |
Xianbo Sun, Zhanbo Chen, Pei Yu. Parameter identification on Abelian integrals to achieve Chebyshev property. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020375 |
[15] |
Rajendra K C Khatri, Brendan J Caseria, Yifei Lou, Guanghua Xiao, Yan Cao. Automatic extraction of cell nuclei using dilated convolutional network. Inverse Problems & Imaging, 2021, 15 (1) : 27-40. doi: 10.3934/ipi.2020049 |
[16] |
Zsolt Saffer, Miklós Telek, Gábor Horváth. Analysis of Markov-modulated fluid polling systems with gated discipline. Journal of Industrial & Management Optimization, 2021, 17 (2) : 575-599. doi: 10.3934/jimo.2019124 |
[17] |
Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075 |
[18] |
Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020454 |
[19] |
Honglin Yang, Jiawu Peng. Coordinating a supply chain with demand information updating. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020181 |
[20] |
Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115 |
2019 Impact Factor: 1.053
Tools
Metrics
Other articles
by authors
[Back to Top]