\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Markov Chain Monte Carlo based inverse modeling of traffic flows using GPS data

Abstract Related Papers Cited by
  • In large scale deployments of traffic flow models, estimation of the model parameters is a critical but cumbersome task. A poorly calibrated model leads to erroneous estimates in data--poor environments, and limited forecasting ability. In this article we present a method for calibrating flow model parameters for a discretized scalar conservation law using only velocity measurements. The method is based on a Markov Chain Monte Carlo technique, which is used to approximate statistics of the posterior distribution of the model parameters. Numerical experiments highlight the difficulty in estimating jam densities and provide a new approach to improve performance of the sampling through re-parameterization of the model. Supporting source code for the numerical experiments is available for download at https://github.com/dbwork/MCMC-based-inverse-modeling-of-traffic.
    Mathematics Subject Classification: 90B20, 65C05, 65C40, 35L65, 65N21.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    T. Bellemans, B. D. Schutter and B. D. Moor, Model predictive control with repeated model fitting for ramp metering, in "Proceedings of the IEEE 5th Conference on Intelligent Transportation Systems," (2002), 236-241.doi: 10.1109/ITSC.2002.1041221.

    [2]

    T. Bellemans, B. D. Schutter, G. Wets and B. D. Moor, Model predictive control for ramp metering combined with extended Kalman filter-based traffic state estimation, in "Proceedings of IEEE Intelligent Transportation Systems Conference," (2006), 406-411.doi: 10.1109/ITSC.2006.1706775.

    [3]

    S. Blandin, A. Couque, A. Bayen and D. Work, On sequential data assimilation for scalar macroscopic traffic flow models, Physica D: Nonlinear Phenomena, 241 (2012), 1421-1440.

    [4]

    G. Bretti and B. Piccoli, A tracking algorithm for car paths on road networks, SIAM Journal on Applied Dynamical Systems, 7 (2008), 510-531.doi: 10.1137/070697768.

    [5]

    R. M. Colombo and A. Marson, A Hölder continuous ode related to traffic flow, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 133 (2003), 759-772.doi: 10.1017/S0308210500002663.

    [6]

    M. Cremer and M. Papageorgiou, Parameter identification for a traffic flow model, Automatica J. IFAC, 17 (1981), 837-843.doi: 10.1016/0005-1098(81)90071-6.

    [7]

    E. Cristiani, C. de Fabritiis and B. Piccoli, A fluid dynamic approach for traffic forecast from mobile sensor data, Communications in Applied and Industrial Mathematics, 1 (2010), 54-71.

    [8]

    G. Dervisoglu, G. Gomes, J. Kwon, R. Horowitz and P. Varaiya, Automatic calibration of the fundamental diagram and empirical observations on capacity, in "Proceedings of the 88th Annual Meeting," Washington, D.C., 2009, Transportation Research Board.

    [9]

    M. Garavello and B. Piccoli, "Traffic Flow on Networks," Conservation laws models. AIMS Series on Applied Mathematics, 1. American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006. xvi+243 pp.

    [10]

    W. Gilks, S. Richardson and D. Spegelhalter, "Markov Chain Monte Carlo in Practice," Interdisciplinary Statistics. Chapman & Hall, London, 1996.

    [11]

    S. Godunov, A difference method for the numerical calculation of discontinuous solutions of hydrodynamic equations, (Russian) Mat. Sb. (N. S.), 47 (1959), 271-306.

    [12]

    A. Hegyi, D. Girimonte, R. Babŭska and B. D. Schutter, A comparison of filter configurations for freeway traffic state estimation, in "Proceedings of the 2006 IEEE Intelligent Transportation Systems Conference," Toronto, Canada, 2006, ITSC, 1029-1034.doi: 10.1109/ITSC.2006.1707357.

    [13]

    J. Kaipio and E. Somersalo, "Statistical and Computational Inverse Problems," Springer, 2005.

    [14]

    J. Lebacque, The Godunov scheme and what it means for first order traffic flow models, in "13th International Symposium on Transportation and Traffic Theory," (1996), 647-677.

    [15]

    R. J. LeVeque, "Numerical Methods for Conservation Laws," Second edition. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 1992. x+214 pp.doi: 10.1007/978-3-0348-8629-1.

    [16]

    M. Lighthill and G. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London. Ser. A. 229 (1955), 317-345.doi: 10.1098/rspa.1955.0089.

    [17]

    J. V. Lint, S. Hoogendoorn and A. Hegyi, Dual EKF state and parameter estimation in multi-class first-order traffic flow models, in "Proceedings of the 17th World Congress," Seoul, Korea, (2008), The International Federation of Automatic Control.

    [18]

    X.-Y. Lu, P. Varaiya and R. Horowitz, Fundamental diagram modeling and analysis based on NGSIM data, in "12th IFAC Symposium on Control in Transportation Systems," (2009).

    [19]

    L. Mihaylova, R. Boel and A. Hegyi, Freeway traffic estimation within particle filtering framework, Automatica J. IFAC, 43 (2007), 290-300.doi: 10.1016/j.automatica.2006.08.023.

    [20]

    L. Munoz, X. Sun, D. Sun, G. Gomez and R. Horowitz, Methodological calibration of the cell transmission model, in "Proceedings of the American Control Conference," 1, 2004, 798-803.

    [21]

    A. Muralidharan, G. Dervisoglu and R. Horowitz, Probabilistic graphical models of fundamental diagram parameters for freeway traffic simulations, in "Proceedings of the 90th Annual Meeting," Washington, D.C., (2011), Transportation Research Board.doi: 10.3141/2249-10.

    [22]

    P. I. Richards, Shock waves on the highway, Operations Research, 4 (1956), 42-51.doi: 10.1287/opre.4.1.42.

    [23]

    S. Smulders, Control of freeway traffic flow by variable speed signs, Transportation Research Part B: Methodological, 24 (1990), 111-132.doi: 10.1016/0191-2615(90)90023-R.

    [24]

    Transportation Research Board, "HCM 2010: Highway Capacity Manual," (2010).

    [25]
    [26]

    Y. Wang, M. Papageorgiou and A. Messmer, RENAISSANCE - A unified macroscopic model-based approach to real-time freeway network traffic surveillance, Transportation Research Part C: Emerging Technologies, 14 (2006), 190-212.doi: 10.1016/j.trc.2006.06.001.

    [27]

    Y. Wang, M. Papageorgiou and A. Messmer, Real-time freeway traffic state estimation based on extended kalman filter: A case study, Transportation Science, 41 (2007), 167-181.doi: 10.1287/trsc.1070.0194.

    [28]

    D. Work, S. Blandin, O.-P. Tossavainen, B. Piccoli and A. Bayen, A traffic model for velocity data assimilation, Appl. Math. Res. Express. AMRX, 2010 (2010), 1-35.

    [29]

    J. Yan, Parameter identification of freeway traffic flow model and adaptive ramp metering, in "2009 Second International Symposium on Electronic Commerce and Security," (2009), 235-238.doi: 10.1109/ISECS.2009.39.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(176) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return