• Previous Article
    Probability hypothesis density filtering for real-time traffic state estimation and prediction
  • NHM Home
  • This Issue
  • Next Article
    Spoofing cyber attack detection in probe-based traffic monitoring systems using mixed integer linear programming
September  2013, 8(3): 803-824. doi: 10.3934/nhm.2013.8.803

Markov Chain Monte Carlo based inverse modeling of traffic flows using GPS data

1. 

Microsoft, 1065 La Avenida St, Mountain View, CA 94043, United States

2. 

University of Illinois at Urbana-Champaign, 1203 Newmark Civil Engineering Laboratory, 205 N. Mathews Ave, Urbana, IL 61801, United States

Received  October 2012 Revised  June 2013 Published  October 2013

In large scale deployments of traffic flow models, estimation of the model parameters is a critical but cumbersome task. A poorly calibrated model leads to erroneous estimates in data--poor environments, and limited forecasting ability. In this article we present a method for calibrating flow model parameters for a discretized scalar conservation law using only velocity measurements. The method is based on a Markov Chain Monte Carlo technique, which is used to approximate statistics of the posterior distribution of the model parameters. Numerical experiments highlight the difficulty in estimating jam densities and provide a new approach to improve performance of the sampling through re-parameterization of the model. Supporting source code for the numerical experiments is available for download at https://github.com/dbwork/MCMC-based-inverse-modeling-of-traffic.
Citation: Olli-Pekka Tossavainen, Daniel B. Work. Markov Chain Monte Carlo based inverse modeling of traffic flows using GPS data. Networks & Heterogeneous Media, 2013, 8 (3) : 803-824. doi: 10.3934/nhm.2013.8.803
References:
[1]

T. Bellemans, B. D. Schutter and B. D. Moor, Model predictive control with repeated model fitting for ramp metering,, in, (2002), 236.  doi: 10.1109/ITSC.2002.1041221.  Google Scholar

[2]

T. Bellemans, B. D. Schutter, G. Wets and B. D. Moor, Model predictive control for ramp metering combined with extended Kalman filter-based traffic state estimation,, in, (2006), 406.  doi: 10.1109/ITSC.2006.1706775.  Google Scholar

[3]

S. Blandin, A. Couque, A. Bayen and D. Work, On sequential data assimilation for scalar macroscopic traffic flow models,, Physica D: Nonlinear Phenomena, 241 (2012), 1421.   Google Scholar

[4]

G. Bretti and B. Piccoli, A tracking algorithm for car paths on road networks,, SIAM Journal on Applied Dynamical Systems, 7 (2008), 510.  doi: 10.1137/070697768.  Google Scholar

[5]

R. M. Colombo and A. Marson, A Hölder continuous ode related to traffic flow,, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 133 (2003), 759.  doi: 10.1017/S0308210500002663.  Google Scholar

[6]

M. Cremer and M. Papageorgiou, Parameter identification for a traffic flow model,, Automatica J. IFAC, 17 (1981), 837.  doi: 10.1016/0005-1098(81)90071-6.  Google Scholar

[7]

E. Cristiani, C. de Fabritiis and B. Piccoli, A fluid dynamic approach for traffic forecast from mobile sensor data,, Communications in Applied and Industrial Mathematics, 1 (2010), 54.   Google Scholar

[8]

G. Dervisoglu, G. Gomes, J. Kwon, R. Horowitz and P. Varaiya, Automatic calibration of the fundamental diagram and empirical observations on capacity,, in, (2009).   Google Scholar

[9]

M. Garavello and B. Piccoli, "Traffic Flow on Networks,", Conservation laws models. AIMS Series on Applied Mathematics, (2006).   Google Scholar

[10]

W. Gilks, S. Richardson and D. Spegelhalter, "Markov Chain Monte Carlo in Practice,", Interdisciplinary Statistics. Chapman & Hall, (1996).   Google Scholar

[11]

S. Godunov, A difference method for the numerical calculation of discontinuous solutions of hydrodynamic equations,, (Russian) Mat. Sb. (N. S.), 47 (1959), 271.   Google Scholar

[12]

A. Hegyi, D. Girimonte, R. Babŭska and B. D. Schutter, A comparison of filter configurations for freeway traffic state estimation,, in, (2006), 1029.  doi: 10.1109/ITSC.2006.1707357.  Google Scholar

[13]

J. Kaipio and E. Somersalo, "Statistical and Computational Inverse Problems,", Springer, (2005).   Google Scholar

[14]

J. Lebacque, The Godunov scheme and what it means for first order traffic flow models,, in, (1996), 647.   Google Scholar

[15]

R. J. LeVeque, "Numerical Methods for Conservation Laws,", Second edition. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, (1992).  doi: 10.1007/978-3-0348-8629-1.  Google Scholar

[16]

M. Lighthill and G. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads,, Proc. Roy. Soc. London. Ser. A. 229 (1955), 229 (1955), 317.  doi: 10.1098/rspa.1955.0089.  Google Scholar

[17]

J. V. Lint, S. Hoogendoorn and A. Hegyi, Dual EKF state and parameter estimation in multi-class first-order traffic flow models,, in, (2008).   Google Scholar

[18]

X.-Y. Lu, P. Varaiya and R. Horowitz, Fundamental diagram modeling and analysis based on NGSIM data,, in, (2009).   Google Scholar

[19]

L. Mihaylova, R. Boel and A. Hegyi, Freeway traffic estimation within particle filtering framework,, Automatica J. IFAC, 43 (2007), 290.  doi: 10.1016/j.automatica.2006.08.023.  Google Scholar

[20]

L. Munoz, X. Sun, D. Sun, G. Gomez and R. Horowitz, Methodological calibration of the cell transmission model,, in, 1 (2004), 798.   Google Scholar

[21]

A. Muralidharan, G. Dervisoglu and R. Horowitz, Probabilistic graphical models of fundamental diagram parameters for freeway traffic simulations,, in, (2011).  doi: 10.3141/2249-10.  Google Scholar

[22]

P. I. Richards, Shock waves on the highway,, Operations Research, 4 (1956), 42.  doi: 10.1287/opre.4.1.42.  Google Scholar

[23]

S. Smulders, Control of freeway traffic flow by variable speed signs,, Transportation Research Part B: Methodological, 24 (1990), 111.  doi: 10.1016/0191-2615(90)90023-R.  Google Scholar

[24]

Transportation Research Board, "HCM 2010: Highway Capacity Manual,", (2010)., (2010).   Google Scholar

[25]

, , ().   Google Scholar

[26]

Y. Wang, M. Papageorgiou and A. Messmer, RENAISSANCE - A unified macroscopic model-based approach to real-time freeway network traffic surveillance,, Transportation Research Part C: Emerging Technologies, 14 (2006), 190.  doi: 10.1016/j.trc.2006.06.001.  Google Scholar

[27]

Y. Wang, M. Papageorgiou and A. Messmer, Real-time freeway traffic state estimation based on extended kalman filter: A case study,, Transportation Science, 41 (2007), 167.  doi: 10.1287/trsc.1070.0194.  Google Scholar

[28]

D. Work, S. Blandin, O.-P. Tossavainen, B. Piccoli and A. Bayen, A traffic model for velocity data assimilation,, Appl. Math. Res. Express. AMRX, 2010 (2010), 1.   Google Scholar

[29]

J. Yan, Parameter identification of freeway traffic flow model and adaptive ramp metering,, in, (2009), 235.  doi: 10.1109/ISECS.2009.39.  Google Scholar

show all references

References:
[1]

T. Bellemans, B. D. Schutter and B. D. Moor, Model predictive control with repeated model fitting for ramp metering,, in, (2002), 236.  doi: 10.1109/ITSC.2002.1041221.  Google Scholar

[2]

T. Bellemans, B. D. Schutter, G. Wets and B. D. Moor, Model predictive control for ramp metering combined with extended Kalman filter-based traffic state estimation,, in, (2006), 406.  doi: 10.1109/ITSC.2006.1706775.  Google Scholar

[3]

S. Blandin, A. Couque, A. Bayen and D. Work, On sequential data assimilation for scalar macroscopic traffic flow models,, Physica D: Nonlinear Phenomena, 241 (2012), 1421.   Google Scholar

[4]

G. Bretti and B. Piccoli, A tracking algorithm for car paths on road networks,, SIAM Journal on Applied Dynamical Systems, 7 (2008), 510.  doi: 10.1137/070697768.  Google Scholar

[5]

R. M. Colombo and A. Marson, A Hölder continuous ode related to traffic flow,, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 133 (2003), 759.  doi: 10.1017/S0308210500002663.  Google Scholar

[6]

M. Cremer and M. Papageorgiou, Parameter identification for a traffic flow model,, Automatica J. IFAC, 17 (1981), 837.  doi: 10.1016/0005-1098(81)90071-6.  Google Scholar

[7]

E. Cristiani, C. de Fabritiis and B. Piccoli, A fluid dynamic approach for traffic forecast from mobile sensor data,, Communications in Applied and Industrial Mathematics, 1 (2010), 54.   Google Scholar

[8]

G. Dervisoglu, G. Gomes, J. Kwon, R. Horowitz and P. Varaiya, Automatic calibration of the fundamental diagram and empirical observations on capacity,, in, (2009).   Google Scholar

[9]

M. Garavello and B. Piccoli, "Traffic Flow on Networks,", Conservation laws models. AIMS Series on Applied Mathematics, (2006).   Google Scholar

[10]

W. Gilks, S. Richardson and D. Spegelhalter, "Markov Chain Monte Carlo in Practice,", Interdisciplinary Statistics. Chapman & Hall, (1996).   Google Scholar

[11]

S. Godunov, A difference method for the numerical calculation of discontinuous solutions of hydrodynamic equations,, (Russian) Mat. Sb. (N. S.), 47 (1959), 271.   Google Scholar

[12]

A. Hegyi, D. Girimonte, R. Babŭska and B. D. Schutter, A comparison of filter configurations for freeway traffic state estimation,, in, (2006), 1029.  doi: 10.1109/ITSC.2006.1707357.  Google Scholar

[13]

J. Kaipio and E. Somersalo, "Statistical and Computational Inverse Problems,", Springer, (2005).   Google Scholar

[14]

J. Lebacque, The Godunov scheme and what it means for first order traffic flow models,, in, (1996), 647.   Google Scholar

[15]

R. J. LeVeque, "Numerical Methods for Conservation Laws,", Second edition. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, (1992).  doi: 10.1007/978-3-0348-8629-1.  Google Scholar

[16]

M. Lighthill and G. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads,, Proc. Roy. Soc. London. Ser. A. 229 (1955), 229 (1955), 317.  doi: 10.1098/rspa.1955.0089.  Google Scholar

[17]

J. V. Lint, S. Hoogendoorn and A. Hegyi, Dual EKF state and parameter estimation in multi-class first-order traffic flow models,, in, (2008).   Google Scholar

[18]

X.-Y. Lu, P. Varaiya and R. Horowitz, Fundamental diagram modeling and analysis based on NGSIM data,, in, (2009).   Google Scholar

[19]

L. Mihaylova, R. Boel and A. Hegyi, Freeway traffic estimation within particle filtering framework,, Automatica J. IFAC, 43 (2007), 290.  doi: 10.1016/j.automatica.2006.08.023.  Google Scholar

[20]

L. Munoz, X. Sun, D. Sun, G. Gomez and R. Horowitz, Methodological calibration of the cell transmission model,, in, 1 (2004), 798.   Google Scholar

[21]

A. Muralidharan, G. Dervisoglu and R. Horowitz, Probabilistic graphical models of fundamental diagram parameters for freeway traffic simulations,, in, (2011).  doi: 10.3141/2249-10.  Google Scholar

[22]

P. I. Richards, Shock waves on the highway,, Operations Research, 4 (1956), 42.  doi: 10.1287/opre.4.1.42.  Google Scholar

[23]

S. Smulders, Control of freeway traffic flow by variable speed signs,, Transportation Research Part B: Methodological, 24 (1990), 111.  doi: 10.1016/0191-2615(90)90023-R.  Google Scholar

[24]

Transportation Research Board, "HCM 2010: Highway Capacity Manual,", (2010)., (2010).   Google Scholar

[25]

, , ().   Google Scholar

[26]

Y. Wang, M. Papageorgiou and A. Messmer, RENAISSANCE - A unified macroscopic model-based approach to real-time freeway network traffic surveillance,, Transportation Research Part C: Emerging Technologies, 14 (2006), 190.  doi: 10.1016/j.trc.2006.06.001.  Google Scholar

[27]

Y. Wang, M. Papageorgiou and A. Messmer, Real-time freeway traffic state estimation based on extended kalman filter: A case study,, Transportation Science, 41 (2007), 167.  doi: 10.1287/trsc.1070.0194.  Google Scholar

[28]

D. Work, S. Blandin, O.-P. Tossavainen, B. Piccoli and A. Bayen, A traffic model for velocity data assimilation,, Appl. Math. Res. Express. AMRX, 2010 (2010), 1.   Google Scholar

[29]

J. Yan, Parameter identification of freeway traffic flow model and adaptive ramp metering,, in, (2009), 235.  doi: 10.1109/ISECS.2009.39.  Google Scholar

[1]

Caterina Balzotti, Simone Göttlich. A two-dimensional multi-class traffic flow model. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020034

[2]

Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113

[3]

Dominique Chapelle, Philippe Moireau, Patrick Le Tallec. Robust filtering for joint state-parameter estimation in distributed mechanical systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 65-84. doi: 10.3934/dcds.2009.23.65

[4]

Tin Phan, Bruce Pell, Amy E. Kendig, Elizabeth T. Borer, Yang Kuang. Rich dynamics of a simple delay host-pathogen model of cell-to-cell infection for plant virus. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 515-539. doi: 10.3934/dcdsb.2020261

[5]

Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347

[6]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[7]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[8]

Xin Zhao, Tao Feng, Liang Wang, Zhipeng Qiu. Threshold dynamics and sensitivity analysis of a stochastic semi-Markov switched SIRS epidemic model with nonlinear incidence and vaccination. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021010

[9]

Mahir Demir, Suzanne Lenhart. A spatial food chain model for the Black Sea Anchovy, and its optimal fishery. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 155-171. doi: 10.3934/dcdsb.2020373

[10]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[11]

Angelica Pachon, Federico Polito, Costantino Ricciuti. On discrete-time semi-Markov processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1499-1529. doi: 10.3934/dcdsb.2020170

[12]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[13]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[14]

Xianbo Sun, Zhanbo Chen, Pei Yu. Parameter identification on Abelian integrals to achieve Chebyshev property. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020375

[15]

Rajendra K C Khatri, Brendan J Caseria, Yifei Lou, Guanghua Xiao, Yan Cao. Automatic extraction of cell nuclei using dilated convolutional network. Inverse Problems & Imaging, 2021, 15 (1) : 27-40. doi: 10.3934/ipi.2020049

[16]

Zsolt Saffer, Miklós Telek, Gábor Horváth. Analysis of Markov-modulated fluid polling systems with gated discipline. Journal of Industrial & Management Optimization, 2021, 17 (2) : 575-599. doi: 10.3934/jimo.2019124

[17]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[18]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[19]

Honglin Yang, Jiawu Peng. Coordinating a supply chain with demand information updating. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020181

[20]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (76)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]