-
Previous Article
On the passage from atomistic systems to nonlinear elasticity theory for general multi-body potentials with p-growth
- NHM Home
- This Issue
-
Next Article
Asymptotic periodicity of flows in time-depending networks
Plasmonic waves allow perfect transmission through sub-wavelength metallic gratings
1. | Université de Toulon, IMATH, EA 2134, 83957 La Garde, France |
2. | Technische Universität Dortmund, Fakultät für Mathematik, Vogelpothsweg 87, D-44227 Dortmund |
References:
[1] |
G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518.
doi: 10.1137/0523084. |
[2] |
G. Bouchitté and C. Bourel, Multiscale nanorod metamaterials and realizable permittivity tensors, Commun. in Comput. Phys., 11 (2012), 489-507.
doi: 10.4208/cicp.171209.110810s. |
[3] |
G. Bouchitté, C. Bourel and D. Felbacq, Homogenization of the 3D Maxwell system near resonances and artificial magnetism, C. R. Math. Acad. Sci. Paris, 347 (2009), 571-576.
doi: 10.1016/j.crma.2009.02.027. |
[4] |
G. Bouchitté and D. Felbacq, Negative refraction in periodic and random photonic crystals, New J. Phys., 7 (2005). |
[5] |
G. Bouchitté and D. Felbacq, Homogenization of a wire photonic crystal: The case of small volume fraction, SIAM J. Appl. Math., 66 (2006), 2061-2084.
doi: 10.1137/050633147. |
[6] |
G. Bouchitté and B. Schweizer, Cloaking of small objects by anomalous localized resonance, Quart. J. Mech. Appl. Math., 63 (2010), 437-463.
doi: 10.1093/qjmam/hbq008. |
[7] |
G. Bouchitté and B. Schweizer, Homogenization of Maxwell's equations with split rings, SIAM Multiscale Modeling and Simulation, 8 (2010), 717-750.
doi: 10.1137/09074557X. |
[8] |
Q. Cao and P. Lalanne, Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits, Phys. Rev. Lett., 88 (2002), 057403.
doi: 10.1103/PhysRevLett.88.057403. |
[9] |
D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering theory, volume 93 of Applied Mathematical Sciences. Springer-Verlag, Berlin, second edition, 1998. |
[10] |
T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays, Letters to Nature, 391 (1998), 667-669. |
[11] |
D. Felbacq, Noncommuting limits in homogenization theory of electromagnetic crystals, J. Math. Phys., 43 (2002), 52-55.
doi: 10.1063/1.1418013. |
[12] |
R. Kohn, J. Lu, B. Schweizer and M. Weinstein, A variational perspective on cloaking by anomalous localized resonance, Comm. Math. Phys. (accepted). |
[13] |
P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru and K. D. Möller, One-mode model and airy-like formulae for one-dimensional metallic gratings, Journal of Optics A: Pure and Applied Optics, 2 (2000), 48.
doi: 10.1088/1464-4258/2/1/309. |
[14] |
P. Lalanne, C. Sauvan, J. P. Hugonin, J. C. Rodier and P. Chavel, Perturbative approach for surface plasmon effects on flat interfaces periodically corrugated by subwavelength apertures, Physical Review B, (2003).
doi: 10.1103/PhysRevB.68.125404. |
[15] |
A. Lamacz and B. Schweizer, Effective maxwell equations in a geometry with flat rings of arbitrary shape, SIAM J. Math. Anal., 45 (2013), 1460-1494.
doi: 10.1137/120874321. |
[16] |
A. Mary, S. G. Rodrigo, L. Martin-Moreno and F. J. Garcia-Vidal, Holey metal films: From extraordinary transmission to negative-index behavior, Physical Review B, 80 (2009).
doi: 10.1103/PhysRevB.80.165431. |
[17] |
G. Milton and N.-A. Nicorovici, On the cloaking effects associated with anomalous localized resonance, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462 (2006), 3027-3059.
doi: 10.1098/rspa.2006.1715. |
[18] |
S. O'Brien and J. Pendry, Magnetic activity at infrared frequencies in structured metallic photonic crystals, J. Phys. Condens. Mat., 14 (2002), 6383-6394. |
[19] |
J. A. Porto, F. J. Garcia-Vidal and J. B. Pendry, Transmission resonances on metallic gratings with very narrow slits, Phys. Rev. Lett., 83 (1999), 2845-2848.
doi: 10.1103/PhysRevLett.83.2845. |
[20] |
L. Schwartz, Théorie des Distributions, Publications de l'Institut de Mathématique de l'Université de Strasbourg, No. IX-X. Nouvelle édition, Entiérement corrigée, Refondue et Augmentée. Hermann, Paris, 1966. |
[21] |
T. Vallius, J. Turunen, M. Mansuripur and S. Honkanen, Transmission through single subwavelength apertures in thin metal films and effects of surface plasmons, J. Opt. Soc. Am. A, 21 (2004), 456-463.
doi: 10.1364/JOSAA.21.000456. |
show all references
References:
[1] |
G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518.
doi: 10.1137/0523084. |
[2] |
G. Bouchitté and C. Bourel, Multiscale nanorod metamaterials and realizable permittivity tensors, Commun. in Comput. Phys., 11 (2012), 489-507.
doi: 10.4208/cicp.171209.110810s. |
[3] |
G. Bouchitté, C. Bourel and D. Felbacq, Homogenization of the 3D Maxwell system near resonances and artificial magnetism, C. R. Math. Acad. Sci. Paris, 347 (2009), 571-576.
doi: 10.1016/j.crma.2009.02.027. |
[4] |
G. Bouchitté and D. Felbacq, Negative refraction in periodic and random photonic crystals, New J. Phys., 7 (2005). |
[5] |
G. Bouchitté and D. Felbacq, Homogenization of a wire photonic crystal: The case of small volume fraction, SIAM J. Appl. Math., 66 (2006), 2061-2084.
doi: 10.1137/050633147. |
[6] |
G. Bouchitté and B. Schweizer, Cloaking of small objects by anomalous localized resonance, Quart. J. Mech. Appl. Math., 63 (2010), 437-463.
doi: 10.1093/qjmam/hbq008. |
[7] |
G. Bouchitté and B. Schweizer, Homogenization of Maxwell's equations with split rings, SIAM Multiscale Modeling and Simulation, 8 (2010), 717-750.
doi: 10.1137/09074557X. |
[8] |
Q. Cao and P. Lalanne, Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits, Phys. Rev. Lett., 88 (2002), 057403.
doi: 10.1103/PhysRevLett.88.057403. |
[9] |
D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering theory, volume 93 of Applied Mathematical Sciences. Springer-Verlag, Berlin, second edition, 1998. |
[10] |
T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays, Letters to Nature, 391 (1998), 667-669. |
[11] |
D. Felbacq, Noncommuting limits in homogenization theory of electromagnetic crystals, J. Math. Phys., 43 (2002), 52-55.
doi: 10.1063/1.1418013. |
[12] |
R. Kohn, J. Lu, B. Schweizer and M. Weinstein, A variational perspective on cloaking by anomalous localized resonance, Comm. Math. Phys. (accepted). |
[13] |
P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru and K. D. Möller, One-mode model and airy-like formulae for one-dimensional metallic gratings, Journal of Optics A: Pure and Applied Optics, 2 (2000), 48.
doi: 10.1088/1464-4258/2/1/309. |
[14] |
P. Lalanne, C. Sauvan, J. P. Hugonin, J. C. Rodier and P. Chavel, Perturbative approach for surface plasmon effects on flat interfaces periodically corrugated by subwavelength apertures, Physical Review B, (2003).
doi: 10.1103/PhysRevB.68.125404. |
[15] |
A. Lamacz and B. Schweizer, Effective maxwell equations in a geometry with flat rings of arbitrary shape, SIAM J. Math. Anal., 45 (2013), 1460-1494.
doi: 10.1137/120874321. |
[16] |
A. Mary, S. G. Rodrigo, L. Martin-Moreno and F. J. Garcia-Vidal, Holey metal films: From extraordinary transmission to negative-index behavior, Physical Review B, 80 (2009).
doi: 10.1103/PhysRevB.80.165431. |
[17] |
G. Milton and N.-A. Nicorovici, On the cloaking effects associated with anomalous localized resonance, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462 (2006), 3027-3059.
doi: 10.1098/rspa.2006.1715. |
[18] |
S. O'Brien and J. Pendry, Magnetic activity at infrared frequencies in structured metallic photonic crystals, J. Phys. Condens. Mat., 14 (2002), 6383-6394. |
[19] |
J. A. Porto, F. J. Garcia-Vidal and J. B. Pendry, Transmission resonances on metallic gratings with very narrow slits, Phys. Rev. Lett., 83 (1999), 2845-2848.
doi: 10.1103/PhysRevLett.83.2845. |
[20] |
L. Schwartz, Théorie des Distributions, Publications de l'Institut de Mathématique de l'Université de Strasbourg, No. IX-X. Nouvelle édition, Entiérement corrigée, Refondue et Augmentée. Hermann, Paris, 1966. |
[21] |
T. Vallius, J. Turunen, M. Mansuripur and S. Honkanen, Transmission through single subwavelength apertures in thin metal films and effects of surface plasmons, J. Opt. Soc. Am. A, 21 (2004), 456-463.
doi: 10.1364/JOSAA.21.000456. |
[1] |
Daniel Bouche, Youngjoon Hong, Chang-Yeol Jung. Asymptotic analysis of the scattering problem for the Helmholtz equations with high wave numbers. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1159-1181. doi: 10.3934/dcds.2017048 |
[2] |
Wenjia Jing, Olivier Pinaud. A backscattering model based on corrector theory of homogenization for the random Helmholtz equation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5377-5407. doi: 10.3934/dcdsb.2019063 |
[3] |
Sista Sivaji Ganesh, Vivek Tewary. Bloch wave approach to almost periodic homogenization and approximations of effective coefficients. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 1989-2024. doi: 10.3934/dcdsb.2021119 |
[4] |
Michael V. Klibanov. A phaseless inverse scattering problem for the 3-D Helmholtz equation. Inverse Problems and Imaging, 2017, 11 (2) : 263-276. doi: 10.3934/ipi.2017013 |
[5] |
Zhiming Chen, Chao Liang, Xueshuang Xiang. An anisotropic perfectly matched layer method for Helmholtz scattering problems with discontinuous wave number. Inverse Problems and Imaging, 2013, 7 (3) : 663-678. doi: 10.3934/ipi.2013.7.663 |
[6] |
José F. Caicedo, Alfonso Castro. A semilinear wave equation with smooth data and no resonance having no continuous solution. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 653-658. doi: 10.3934/dcds.2009.24.653 |
[7] |
S. L. Ma'u, P. Ramankutty. An averaging method for the Helmholtz equation. Conference Publications, 2003, 2003 (Special) : 604-609. doi: 10.3934/proc.2003.2003.604 |
[8] |
Agnes Lamacz, Ben Schweizer. Effective acoustic properties of a meta-material consisting of small Helmholtz resonators. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 815-835. doi: 10.3934/dcdss.2017041 |
[9] |
Xingni Tan, Fuqi Yin, Guihong Fan. Random exponential attractor for stochastic discrete long wave-short wave resonance equation with multiplicative white noise. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3153-3170. doi: 10.3934/dcdsb.2020055 |
[10] |
Patrizia Donato, Florian Gaveau. Homogenization and correctors for the wave equation in non periodic perforated domains. Networks and Heterogeneous Media, 2008, 3 (1) : 97-124. doi: 10.3934/nhm.2008.3.97 |
[11] |
M. M. Cavalcanti, V.N. Domingos Cavalcanti, D. Andrade, T. F. Ma. Homogenization for a nonlinear wave equation in domains with holes of small capacity. Discrete and Continuous Dynamical Systems, 2006, 16 (4) : 721-743. doi: 10.3934/dcds.2006.16.721 |
[12] |
John Sylvester. An estimate for the free Helmholtz equation that scales. Inverse Problems and Imaging, 2009, 3 (2) : 333-351. doi: 10.3934/ipi.2009.3.333 |
[13] |
Kimitoshi Tsutaya. Scattering theory for the wave equation of a Hartree type in three space dimensions. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2261-2281. doi: 10.3934/dcds.2014.34.2261 |
[14] |
Shenglong Hu. A note on the solvability of a tensor equation. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021146 |
[15] |
Nicolas Forcadel, Wilfredo Salazar, Mamdouh Zaydan. Specified homogenization of a discrete traffic model leading to an effective junction condition. Communications on Pure and Applied Analysis, 2018, 17 (5) : 2173-2206. doi: 10.3934/cpaa.2018104 |
[16] |
Guillaume Bal. Homogenization in random media and effective medium theory for high frequency waves. Discrete and Continuous Dynamical Systems - B, 2007, 8 (2) : 473-492. doi: 10.3934/dcdsb.2007.8.473 |
[17] |
Sang-Yeun Shim, Marcos Capistran, Yu Chen. Rapid perturbational calculations for the Helmholtz equation in two dimensions. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 627-636. doi: 10.3934/dcds.2007.18.627 |
[18] |
Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations and Control Theory, 2022, 11 (2) : 515-536. doi: 10.3934/eect.2021011 |
[19] |
Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079 |
[20] |
Andrei Fursikov, Lyubov Shatina. Nonlocal stabilization by starting control of the normal equation generated by Helmholtz system. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1187-1242. doi: 10.3934/dcds.2018050 |
2021 Impact Factor: 1.41
Tools
Metrics
Other articles
by authors
[Back to Top]