December  2013, 8(4): 857-878. doi: 10.3934/nhm.2013.8.857

Plasmonic waves allow perfect transmission through sub-wavelength metallic gratings

1. 

Université de Toulon, IMATH, EA 2134, 83957 La Garde, France

2. 

Technische Universität Dortmund, Fakultät für Mathematik, Vogelpothsweg 87, D-44227 Dortmund

Received  November 2012 Revised  July 2013 Published  November 2013

We investigate the transmission properties of a metallic layer with narrow slits. Recent measurements and numerical calculations concerning the light transmission through metallic sub-wavelength structures suggest that an unexpectedly high transmission coefficient is possible. We analyze the time harmonic Maxwell's equations in the $H$-parallel case for a fixed incident wavelength. Denoting by $\eta>0$ the typical size of the complex structure, effective equations describing the limit $\eta\to 0$ are derived. For metallic permittivities with negative real part, plasmonic waves can be excited on the surfaces of the channels. When these waves are in resonance with the height of the layer, the result can be perfect transmission through the layer.
Citation: Guy Bouchitté, Ben Schweizer. Plasmonic waves allow perfect transmission through sub-wavelength metallic gratings. Networks and Heterogeneous Media, 2013, 8 (4) : 857-878. doi: 10.3934/nhm.2013.8.857
References:
[1]

G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518. doi: 10.1137/0523084.

[2]

G. Bouchitté and C. Bourel, Multiscale nanorod metamaterials and realizable permittivity tensors, Commun. in Comput. Phys., 11 (2012), 489-507. doi: 10.4208/cicp.171209.110810s.

[3]

G. Bouchitté, C. Bourel and D. Felbacq, Homogenization of the 3D Maxwell system near resonances and artificial magnetism, C. R. Math. Acad. Sci. Paris, 347 (2009), 571-576. doi: 10.1016/j.crma.2009.02.027.

[4]

G. Bouchitté and D. Felbacq, Negative refraction in periodic and random photonic crystals, New J. Phys., 7 (2005).

[5]

G. Bouchitté and D. Felbacq, Homogenization of a wire photonic crystal: The case of small volume fraction, SIAM J. Appl. Math., 66 (2006), 2061-2084. doi: 10.1137/050633147.

[6]

G. Bouchitté and B. Schweizer, Cloaking of small objects by anomalous localized resonance, Quart. J. Mech. Appl. Math., 63 (2010), 437-463. doi: 10.1093/qjmam/hbq008.

[7]

G. Bouchitté and B. Schweizer, Homogenization of Maxwell's equations with split rings, SIAM Multiscale Modeling and Simulation, 8 (2010), 717-750. doi: 10.1137/09074557X.

[8]

Q. Cao and P. Lalanne, Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits, Phys. Rev. Lett., 88 (2002), 057403. doi: 10.1103/PhysRevLett.88.057403.

[9]

D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering theory, volume 93 of Applied Mathematical Sciences. Springer-Verlag, Berlin, second edition, 1998.

[10]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays, Letters to Nature, 391 (1998), 667-669.

[11]

D. Felbacq, Noncommuting limits in homogenization theory of electromagnetic crystals, J. Math. Phys., 43 (2002), 52-55. doi: 10.1063/1.1418013.

[12]

R. Kohn, J. Lu, B. Schweizer and M. Weinstein, A variational perspective on cloaking by anomalous localized resonanceComm. Math. Phys. (accepted).

[13]

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru and K. D. Möller, One-mode model and airy-like formulae for one-dimensional metallic gratings, Journal of Optics A: Pure and Applied Optics, 2 (2000), 48. doi: 10.1088/1464-4258/2/1/309.

[14]

P. Lalanne, C. Sauvan, J. P. Hugonin, J. C. Rodier and P. Chavel, Perturbative approach for surface plasmon effects on flat interfaces periodically corrugated by subwavelength apertures, Physical Review B, (2003). doi: 10.1103/PhysRevB.68.125404.

[15]

A. Lamacz and B. Schweizer, Effective maxwell equations in a geometry with flat rings of arbitrary shape, SIAM J. Math. Anal., 45 (2013), 1460-1494. doi: 10.1137/120874321.

[16]

A. Mary, S. G. Rodrigo, L. Martin-Moreno and F. J. Garcia-Vidal, Holey metal films: From extraordinary transmission to negative-index behavior, Physical Review B, 80 (2009). doi: 10.1103/PhysRevB.80.165431.

[17]

G. Milton and N.-A. Nicorovici, On the cloaking effects associated with anomalous localized resonance, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462 (2006), 3027-3059. doi: 10.1098/rspa.2006.1715.

[18]

S. O'Brien and J. Pendry, Magnetic activity at infrared frequencies in structured metallic photonic crystals, J. Phys. Condens. Mat., 14 (2002), 6383-6394.

[19]

J. A. Porto, F. J. Garcia-Vidal and J. B. Pendry, Transmission resonances on metallic gratings with very narrow slits, Phys. Rev. Lett., 83 (1999), 2845-2848. doi: 10.1103/PhysRevLett.83.2845.

[20]

L. Schwartz, Théorie des Distributions, Publications de l'Institut de Mathématique de l'Université de Strasbourg, No. IX-X. Nouvelle édition, Entiérement corrigée, Refondue et Augmentée. Hermann, Paris, 1966.

[21]

T. Vallius, J. Turunen, M. Mansuripur and S. Honkanen, Transmission through single subwavelength apertures in thin metal films and effects of surface plasmons, J. Opt. Soc. Am. A, 21 (2004), 456-463. doi: 10.1364/JOSAA.21.000456.

show all references

References:
[1]

G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518. doi: 10.1137/0523084.

[2]

G. Bouchitté and C. Bourel, Multiscale nanorod metamaterials and realizable permittivity tensors, Commun. in Comput. Phys., 11 (2012), 489-507. doi: 10.4208/cicp.171209.110810s.

[3]

G. Bouchitté, C. Bourel and D. Felbacq, Homogenization of the 3D Maxwell system near resonances and artificial magnetism, C. R. Math. Acad. Sci. Paris, 347 (2009), 571-576. doi: 10.1016/j.crma.2009.02.027.

[4]

G. Bouchitté and D. Felbacq, Negative refraction in periodic and random photonic crystals, New J. Phys., 7 (2005).

[5]

G. Bouchitté and D. Felbacq, Homogenization of a wire photonic crystal: The case of small volume fraction, SIAM J. Appl. Math., 66 (2006), 2061-2084. doi: 10.1137/050633147.

[6]

G. Bouchitté and B. Schweizer, Cloaking of small objects by anomalous localized resonance, Quart. J. Mech. Appl. Math., 63 (2010), 437-463. doi: 10.1093/qjmam/hbq008.

[7]

G. Bouchitté and B. Schweizer, Homogenization of Maxwell's equations with split rings, SIAM Multiscale Modeling and Simulation, 8 (2010), 717-750. doi: 10.1137/09074557X.

[8]

Q. Cao and P. Lalanne, Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits, Phys. Rev. Lett., 88 (2002), 057403. doi: 10.1103/PhysRevLett.88.057403.

[9]

D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering theory, volume 93 of Applied Mathematical Sciences. Springer-Verlag, Berlin, second edition, 1998.

[10]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays, Letters to Nature, 391 (1998), 667-669.

[11]

D. Felbacq, Noncommuting limits in homogenization theory of electromagnetic crystals, J. Math. Phys., 43 (2002), 52-55. doi: 10.1063/1.1418013.

[12]

R. Kohn, J. Lu, B. Schweizer and M. Weinstein, A variational perspective on cloaking by anomalous localized resonanceComm. Math. Phys. (accepted).

[13]

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru and K. D. Möller, One-mode model and airy-like formulae for one-dimensional metallic gratings, Journal of Optics A: Pure and Applied Optics, 2 (2000), 48. doi: 10.1088/1464-4258/2/1/309.

[14]

P. Lalanne, C. Sauvan, J. P. Hugonin, J. C. Rodier and P. Chavel, Perturbative approach for surface plasmon effects on flat interfaces periodically corrugated by subwavelength apertures, Physical Review B, (2003). doi: 10.1103/PhysRevB.68.125404.

[15]

A. Lamacz and B. Schweizer, Effective maxwell equations in a geometry with flat rings of arbitrary shape, SIAM J. Math. Anal., 45 (2013), 1460-1494. doi: 10.1137/120874321.

[16]

A. Mary, S. G. Rodrigo, L. Martin-Moreno and F. J. Garcia-Vidal, Holey metal films: From extraordinary transmission to negative-index behavior, Physical Review B, 80 (2009). doi: 10.1103/PhysRevB.80.165431.

[17]

G. Milton and N.-A. Nicorovici, On the cloaking effects associated with anomalous localized resonance, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462 (2006), 3027-3059. doi: 10.1098/rspa.2006.1715.

[18]

S. O'Brien and J. Pendry, Magnetic activity at infrared frequencies in structured metallic photonic crystals, J. Phys. Condens. Mat., 14 (2002), 6383-6394.

[19]

J. A. Porto, F. J. Garcia-Vidal and J. B. Pendry, Transmission resonances on metallic gratings with very narrow slits, Phys. Rev. Lett., 83 (1999), 2845-2848. doi: 10.1103/PhysRevLett.83.2845.

[20]

L. Schwartz, Théorie des Distributions, Publications de l'Institut de Mathématique de l'Université de Strasbourg, No. IX-X. Nouvelle édition, Entiérement corrigée, Refondue et Augmentée. Hermann, Paris, 1966.

[21]

T. Vallius, J. Turunen, M. Mansuripur and S. Honkanen, Transmission through single subwavelength apertures in thin metal films and effects of surface plasmons, J. Opt. Soc. Am. A, 21 (2004), 456-463. doi: 10.1364/JOSAA.21.000456.

[1]

Daniel Bouche, Youngjoon Hong, Chang-Yeol Jung. Asymptotic analysis of the scattering problem for the Helmholtz equations with high wave numbers. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1159-1181. doi: 10.3934/dcds.2017048

[2]

Wenjia Jing, Olivier Pinaud. A backscattering model based on corrector theory of homogenization for the random Helmholtz equation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5377-5407. doi: 10.3934/dcdsb.2019063

[3]

Sista Sivaji Ganesh, Vivek Tewary. Bloch wave approach to almost periodic homogenization and approximations of effective coefficients. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 1989-2024. doi: 10.3934/dcdsb.2021119

[4]

Michael V. Klibanov. A phaseless inverse scattering problem for the 3-D Helmholtz equation. Inverse Problems and Imaging, 2017, 11 (2) : 263-276. doi: 10.3934/ipi.2017013

[5]

Zhiming Chen, Chao Liang, Xueshuang Xiang. An anisotropic perfectly matched layer method for Helmholtz scattering problems with discontinuous wave number. Inverse Problems and Imaging, 2013, 7 (3) : 663-678. doi: 10.3934/ipi.2013.7.663

[6]

José F. Caicedo, Alfonso Castro. A semilinear wave equation with smooth data and no resonance having no continuous solution. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 653-658. doi: 10.3934/dcds.2009.24.653

[7]

S. L. Ma'u, P. Ramankutty. An averaging method for the Helmholtz equation. Conference Publications, 2003, 2003 (Special) : 604-609. doi: 10.3934/proc.2003.2003.604

[8]

Agnes Lamacz, Ben Schweizer. Effective acoustic properties of a meta-material consisting of small Helmholtz resonators. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 815-835. doi: 10.3934/dcdss.2017041

[9]

Xingni Tan, Fuqi Yin, Guihong Fan. Random exponential attractor for stochastic discrete long wave-short wave resonance equation with multiplicative white noise. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3153-3170. doi: 10.3934/dcdsb.2020055

[10]

Patrizia Donato, Florian Gaveau. Homogenization and correctors for the wave equation in non periodic perforated domains. Networks and Heterogeneous Media, 2008, 3 (1) : 97-124. doi: 10.3934/nhm.2008.3.97

[11]

M. M. Cavalcanti, V.N. Domingos Cavalcanti, D. Andrade, T. F. Ma. Homogenization for a nonlinear wave equation in domains with holes of small capacity. Discrete and Continuous Dynamical Systems, 2006, 16 (4) : 721-743. doi: 10.3934/dcds.2006.16.721

[12]

John Sylvester. An estimate for the free Helmholtz equation that scales. Inverse Problems and Imaging, 2009, 3 (2) : 333-351. doi: 10.3934/ipi.2009.3.333

[13]

Kimitoshi Tsutaya. Scattering theory for the wave equation of a Hartree type in three space dimensions. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2261-2281. doi: 10.3934/dcds.2014.34.2261

[14]

Shenglong Hu. A note on the solvability of a tensor equation. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021146

[15]

Nicolas Forcadel, Wilfredo Salazar, Mamdouh Zaydan. Specified homogenization of a discrete traffic model leading to an effective junction condition. Communications on Pure and Applied Analysis, 2018, 17 (5) : 2173-2206. doi: 10.3934/cpaa.2018104

[16]

Guillaume Bal. Homogenization in random media and effective medium theory for high frequency waves. Discrete and Continuous Dynamical Systems - B, 2007, 8 (2) : 473-492. doi: 10.3934/dcdsb.2007.8.473

[17]

Sang-Yeun Shim, Marcos Capistran, Yu Chen. Rapid perturbational calculations for the Helmholtz equation in two dimensions. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 627-636. doi: 10.3934/dcds.2007.18.627

[18]

Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations and Control Theory, 2022, 11 (2) : 515-536. doi: 10.3934/eect.2021011

[19]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[20]

Andrei Fursikov, Lyubov Shatina. Nonlocal stabilization by starting control of the normal equation generated by Helmholtz system. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1187-1242. doi: 10.3934/dcds.2018050

2021 Impact Factor: 1.41

Metrics

  • PDF downloads (75)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]