\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Variational evolution of one-dimensional Lennard-Jones systems

Abstract Related Papers Cited by
  • We analyze Lennard-Jones systems from the standpoint of variational principles beyond the static framework. In a one-dimensional setting such systems have already been shown to be equivalent to energies of Fracture Mechanics. Here we show that this equivalence can also be given in dynamical terms using the notion of minimizing movements.
    Mathematics Subject Classification: Primary: 35K90, 74A45; Secondary: 49J45, 74R10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. Ambrosio, Minimizing movements, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5), 19 (1995), 191-246.

    [2]

    L. Ambrosio and A. Braides, Energies in $SBV$ and variational models in fracture mechanics, in Homogenization and Applications to Material Sciences (Nice, 1995) (eds. D. Cioranescu, A. Damlamian, and P. Donato), GAKUTO Internat. Ser. Math. Sci. Appl., 9, Gakkōtosho, Tokyo, 1995, 1-22.

    [3]

    L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press, New York, 2000.

    [4]

    L. Ambrosio and N. Gigli, A user's guide to optimal transport, in Modelling and Optimisation of Flows on Networks (eds. B. Piccoli and M. Rascle), Lecture Notes in Mathematics, 2062, Springer, Berlin, 2013, 1-155.

    [5]

    L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH, Zürich, Birkhhäuser, Basel, 2008.

    [6]

    A. Braides, $\Gamma$-convergence for Beginners, Oxford University Press, Oxford, 2002.doi: 10.1093/acprof:oso/9780198507840.001.0001.

    [7]

    A. Braides, Local Minimization, Variational Evolution and $\Gamma$-Convergence, Lecture Notes in Mathematics, 2094, Springer, Berlin, 2014.doi: 10.1007/978-3-319-01982-6.

    [8]

    A. Braides, M. S. Gelli and M. Novaga, Motion and pinning of discrete interfaces, Arch. Ration. Mech. Anal., 95 (2010), 469-498.doi: 10.1007/s00205-009-0215-z.

    [9]

    A. Braides, A. J. Lew and M. Ortiz, Effective cohesive behavior of layers of interatomic planes, Arch. Ration. Mech. Anal., 180 (2006), 151-182.doi: 10.1007/s00205-005-0399-9.

    [10]

    A. Braides and L. Truskinovsky, Asymptotic expansions by Gamma-convergence, Cont. Mech. Therm., 20 (2008), 21-62.doi: 10.1007/s00161-008-0072-2.

    [11]

    G. Dal Maso, An Introduction to $\Gamma$-Convergence, Birkhäuser, Boston, 1993.doi: 10.1007/978-1-4612-0327-8.

    [12]

    E. De Giorgi, New problems on minimizing movements, in Boundary Value Problems for Partial Differential Equations and Applications, RMA Res. Notes Appl. Math., 29, Masson, Paris, 1993, 81-98.

    [13]

    N. Gigli, On the heat flow on metric measure spaces: Existence, uniqueness and stability, Calc. Var. Partial Differential Equations, 39 (2010), 101-120.doi: 10.1007/s00526-009-0303-9.

    [14]

    M. Gobbino, Gradient flow for the one-dimensional Mumford-Shah functional, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 27 (1998), 145-193.

    [15]

    E. Sandier and S. Serfaty, Gamma-convergence of gradient flows and application to Ginzburg-Landau, Comm. Pure Appl. Math., 57 (2004), 1627-1672.doi: 10.1002/cpa.20046.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(93) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return