June  2014, 9(2): 335-351. doi: 10.3934/nhm.2014.9.335

A revisit to the consensus for linearized Vicsek model under joint rooted leadership via a special matrix

1. 

Department of Mathematics, Harbin Institute of Technology, Harbin 150001, China

2. 

Department of Mathematical Sciences and Research Institute of Mathematics, Seoul National University, Seoul 151-747

Received  April 2013 Revised  March 2014 Published  July 2014

We address the exponential consensus problem for the linearized Vicsek model which was introduced by Jadbabaie et al. in [10] under a joint rooted leadership via the $(sp)$ matrices. This model deals with self-propelled particles moving in the plane with the same speed but different headings interacting with neighboring agents by a linear relaxation rule. When the time-varying switching topology of the neighbor graph satisfies some weak connectivity condition, namely, `` joint connectivity condition'' in the spatial-temporal domain, it is well known that the consensus for the linearized Vicsek model can be achieved asymptotically. In this paper, we extend the theory of $(sp)$ matrices and apply it to revisit this asymptotic consensus problem and give an explicit estimate on the maximum Lyapunov exponent, when the underlying network topology satisfies the joint rooted leadership which is directed and non-symmetric.
Citation: Zhuchun Li, Xiaoping Xue, Seung-Yeal Ha. A revisit to the consensus for linearized Vicsek model under joint rooted leadership via a special matrix. Networks and Heterogeneous Media, 2014, 9 (2) : 335-351. doi: 10.3934/nhm.2014.9.335
References:
[1]

N. Barabanov, Lyapunov exponent and joint spectral radius: Some known and new results, in Proc. 44th Conf. Decision and Control, Seville, Spain, 2005, 2332-2337. doi: 10.1109/CDC.2005.1582510.

[2]

D. P. Bertsekas and J. N. Tsitsiklis, Comments on "Coordination of groups of mobile autonomous agents using nearest neighbor rules'', IEEE Trans. Automat. Control, 52 (2007), 968-969. doi: 10.1109/TAC.2007.895885.

[3]

M. Cao, A. S. Morse and B. D. O. Anderson, Reaching a consensus in a dynamically changing environment: A graphic approach, SIAM J. Control Optim., 47 (2008), 575-600. doi: 10.1137/060657005.

[4]

M. Cao, A. S. Morse and B. D. O. Anderson, Reaching a consensus in a dynamically changing environment: Vonvergence rates, meansurement delays, and asynchronous events, SIAM J. Control Optim., 47 (2008), 601-623. doi: 10.1137/060657029.

[5]

F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862. doi: 10.1109/TAC.2007.895842.

[6]

R. Diestel, Graph Theory, Graduate Texts in Mathematics, Springer-Verlag, New York, 1997.

[7]

L. X. Gao and D. Z. Cheng, Comment on ‘Coordination of groups of mobile agents using nearest neighbor rules', IEEE Trans. Autom. Control, 50 (2005), 1913-1916. doi: 10.1109/TAC.2005.858635.

[8]

S.-Y. Ha, Z. Li, M. Slemrod and X. Xue, Flocking behavior of the Cucker-Smale model under rooted leadership in a large coupling limit, to appear in Quart. Appl. Math.

[9]

J. M. Hendrickx, Graphs and Networks for the Analysis of Autonomous Agent Systems, Ph.D Thesis, Université Catholique de Louvain, Department of Mathematical Engineering, February 2008.

[10]

A. Jadbabaie, J. Lin and A. S. Morse, Coordination of groups of mobile agents using nearest neighbor rules, IEEE Trans. Autom. Control, 48 (2003), 988-1001. doi: 10.1109/TAC.2003.812781.

[11]

Z. Li, S.-Y. Ha and X. Xue, Emergent phenomena in an ensemble of Cucker-Smale particles under joint rooted leadership, Math. Mod. Meth. Appl. Sci., 24 (2014), 1389-1419. doi: 10.1142/S0218202514500043.

[12]

Z. Li and X. Xue, Cucker-Smale flocking under rooted leadership with fixed and switching topologies, SIAM J. Appl. Math., 70 (2010), 3156-3174. doi: 10.1137/100791774.

[13]

Z.-X. Liu and L. Guo, Connectivity and synchronization of Vicsek model, Sci. China Ser. F-Inf. Sci., 51 (2008), 848-858. doi: 10.1007/s11432-008-0077-2.

[14]

L. Moreau, Stability of multiagent systems with time-dependent communication links, IEEE Trans. Autom. Control, 50 (2005), 169-182. doi: 10.1109/TAC.2004.841888.

[15]

T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Schochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett. 75 (1995), 1226-1229. doi: 10.1103/PhysRevLett.75.1226.

[16]

X. Xue and L. Guo, A kind of nonnegative matrices and its application on the stability of discrete dynamical systems, J. Math. Anal. Appl., 331 (2007), 1113-1121. doi: 10.1016/j.jmaa.2006.09.053.

[17]

X. Xue and Z. Li, Asymptotic stability analysis of a kind of switched positive linear discrete systems, IEEE Trans. Autom. Control, 55 (2010), 2198-2203. doi: 10.1109/TAC.2010.2052144.

show all references

References:
[1]

N. Barabanov, Lyapunov exponent and joint spectral radius: Some known and new results, in Proc. 44th Conf. Decision and Control, Seville, Spain, 2005, 2332-2337. doi: 10.1109/CDC.2005.1582510.

[2]

D. P. Bertsekas and J. N. Tsitsiklis, Comments on "Coordination of groups of mobile autonomous agents using nearest neighbor rules'', IEEE Trans. Automat. Control, 52 (2007), 968-969. doi: 10.1109/TAC.2007.895885.

[3]

M. Cao, A. S. Morse and B. D. O. Anderson, Reaching a consensus in a dynamically changing environment: A graphic approach, SIAM J. Control Optim., 47 (2008), 575-600. doi: 10.1137/060657005.

[4]

M. Cao, A. S. Morse and B. D. O. Anderson, Reaching a consensus in a dynamically changing environment: Vonvergence rates, meansurement delays, and asynchronous events, SIAM J. Control Optim., 47 (2008), 601-623. doi: 10.1137/060657029.

[5]

F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862. doi: 10.1109/TAC.2007.895842.

[6]

R. Diestel, Graph Theory, Graduate Texts in Mathematics, Springer-Verlag, New York, 1997.

[7]

L. X. Gao and D. Z. Cheng, Comment on ‘Coordination of groups of mobile agents using nearest neighbor rules', IEEE Trans. Autom. Control, 50 (2005), 1913-1916. doi: 10.1109/TAC.2005.858635.

[8]

S.-Y. Ha, Z. Li, M. Slemrod and X. Xue, Flocking behavior of the Cucker-Smale model under rooted leadership in a large coupling limit, to appear in Quart. Appl. Math.

[9]

J. M. Hendrickx, Graphs and Networks for the Analysis of Autonomous Agent Systems, Ph.D Thesis, Université Catholique de Louvain, Department of Mathematical Engineering, February 2008.

[10]

A. Jadbabaie, J. Lin and A. S. Morse, Coordination of groups of mobile agents using nearest neighbor rules, IEEE Trans. Autom. Control, 48 (2003), 988-1001. doi: 10.1109/TAC.2003.812781.

[11]

Z. Li, S.-Y. Ha and X. Xue, Emergent phenomena in an ensemble of Cucker-Smale particles under joint rooted leadership, Math. Mod. Meth. Appl. Sci., 24 (2014), 1389-1419. doi: 10.1142/S0218202514500043.

[12]

Z. Li and X. Xue, Cucker-Smale flocking under rooted leadership with fixed and switching topologies, SIAM J. Appl. Math., 70 (2010), 3156-3174. doi: 10.1137/100791774.

[13]

Z.-X. Liu and L. Guo, Connectivity and synchronization of Vicsek model, Sci. China Ser. F-Inf. Sci., 51 (2008), 848-858. doi: 10.1007/s11432-008-0077-2.

[14]

L. Moreau, Stability of multiagent systems with time-dependent communication links, IEEE Trans. Autom. Control, 50 (2005), 169-182. doi: 10.1109/TAC.2004.841888.

[15]

T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Schochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett. 75 (1995), 1226-1229. doi: 10.1103/PhysRevLett.75.1226.

[16]

X. Xue and L. Guo, A kind of nonnegative matrices and its application on the stability of discrete dynamical systems, J. Math. Anal. Appl., 331 (2007), 1113-1121. doi: 10.1016/j.jmaa.2006.09.053.

[17]

X. Xue and Z. Li, Asymptotic stability analysis of a kind of switched positive linear discrete systems, IEEE Trans. Autom. Control, 55 (2010), 2198-2203. doi: 10.1109/TAC.2010.2052144.

[1]

Janusz Mierczyński, Wenxian Shen. Formulas for generalized principal Lyapunov exponent for parabolic PDEs. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 1189-1199. doi: 10.3934/dcdss.2016048

[2]

Pedro Duarte, Silvius Klein, Manuel Santos. A random cocycle with non Hölder Lyapunov exponent. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4841-4861. doi: 10.3934/dcds.2019197

[3]

Sanjeeva Balasuriya. Uncertainty in finite-time Lyapunov exponent computations. Journal of Computational Dynamics, 2020, 7 (2) : 313-337. doi: 10.3934/jcd.2020013

[4]

Victor Kozyakin. Iterative building of Barabanov norms and computation of the joint spectral radius for matrix sets. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 143-158. doi: 10.3934/dcdsb.2010.14.143

[5]

Chun-Hsien Li, Suh-Yuh Yang. A new discrete Cucker-Smale flocking model under hierarchical leadership. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2587-2599. doi: 10.3934/dcdsb.2016062

[6]

Gabriel Fuhrmann, Jing Wang. Rectifiability of a class of invariant measures with one non-vanishing Lyapunov exponent. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5747-5761. doi: 10.3934/dcds.2017249

[7]

Jinhao Liang. Positive Lyapunov exponent for a class of quasi-periodic cocycles. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1361-1387. doi: 10.3934/dcds.2020080

[8]

Jairo Bochi, Michal Rams. The entropy of Lyapunov-optimizing measures of some matrix cocycles. Journal of Modern Dynamics, 2016, 10: 255-286. doi: 10.3934/jmd.2016.10.255

[9]

Ai-Guo Wu, Ying Zhang, Hui-Jie Sun. Parametric Smith iterative algorithms for discrete Lyapunov matrix equations. Journal of Industrial and Management Optimization, 2020, 16 (6) : 3047-3063. doi: 10.3934/jimo.2019093

[10]

Ewa Girejko, Luís Machado, Agnieszka B. Malinowska, Natália Martins. On consensus in the Cucker–Smale type model on isolated time scales. Discrete and Continuous Dynamical Systems - S, 2018, 11 (1) : 77-89. doi: 10.3934/dcdss.2018005

[11]

Futoshi Takahashi. On the number of maximum points of least energy solution to a two-dimensional Hénon equation with large exponent. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1237-1241. doi: 10.3934/cpaa.2013.12.1237

[12]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control and Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[13]

Shichen Zhang, Jianxiong Zhang, Jiang Shen, Wansheng Tang. A joint dynamic pricing and production model with asymmetric reference price effect. Journal of Industrial and Management Optimization, 2019, 15 (2) : 667-688. doi: 10.3934/jimo.2018064

[14]

Li Deng, Wenjie Bi, Haiying Liu, Kok Lay Teo. A multi-stage method for joint pricing and inventory model with promotion constrains. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : 1653-1682. doi: 10.3934/dcdss.2020097

[15]

Rajeshwari Majumdar, Phanuel Mariano, Hugo Panzo, Lowen Peng, Anthony Sisti. Lyapunov exponent and variance in the CLT for products of random matrices related to random Fibonacci sequences. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4779-4799. doi: 10.3934/dcdsb.2020126

[16]

Seung-Yeal Ha, Hansol Park. Emergent behaviors of the generalized Lohe matrix model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4227-4261. doi: 10.3934/dcdsb.2020286

[17]

Sarah Constantin, Robert S. Strichartz, Miles Wheeler. Analysis of the Laplacian and spectral operators on the Vicsek set. Communications on Pure and Applied Analysis, 2011, 10 (1) : 1-44. doi: 10.3934/cpaa.2011.10.1

[18]

Jordi-Lluís Figueras, Thomas Ohlson Timoudas. Sharp $ \frac12 $-Hölder continuity of the Lyapunov exponent at the bottom of the spectrum for a class of Schrödinger cocycles. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4519-4531. doi: 10.3934/dcds.2020189

[19]

Julia Amador, Mariajesus Lopez-Herrero. Cumulative and maximum epidemic sizes for a nonlinear SEIR stochastic model with limited resources. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3137-3151. doi: 10.3934/dcdsb.2017211

[20]

Luciano Pandolfi. Joint identification via deconvolution of the flux and energy relaxation kernels of the Gurtin-Pipkin model in thermodynamics with memory. Discrete and Continuous Dynamical Systems - S, 2020, 13 (5) : 1589-1599. doi: 10.3934/dcdss.2020090

2021 Impact Factor: 1.41

Metrics

  • PDF downloads (61)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]