-
Previous Article
An easy-to-use algorithm for simulating traffic flow on networks: Theoretical study
- NHM Home
- This Issue
-
Next Article
Myopic models of population dynamics on infinite networks
On relaxation of state constrained optimal control problem for a PDE-ODE model of supply chains
1. | Department of Information Engineering, Electrical Engineering and Applied Mathematics, University of Salerno, Via Giovanni Paolo II, 132, Fisciano (SA), Italy |
2. | Department of Differential Equations, Dnipropetrovsk National University, Gagarin av., 72, 49010 Dnipropetrovsk, Ukraine |
3. | Dept. of Information Eng., Electrical Eng. and Applied Mathematics, University of Salerno, Via Giovanni Paolo II, 132, I 84084 Fisciano (SA), Italy |
References:
[1] |
D. Armbruster, P. Degond and C. Ringhofer, A model for the dynamics of large queuing networks and supply chains, SIAM Journal on Applied Mathematics, 66 (2006), 896-920.
doi: 10.1137/040604625. |
[2] |
H. Attouch, G. Buttazzo and G. Michaille, Variational Analysis in Sobolev and BV Spaces: Application to PDE and Optimization, SIAM, Philadelphia, 2006. |
[3] |
G. Bretti, C. D'Apice, R. Manzo and B. Piccoli, A continuum-discrete model for supply chains dynamics, Networks and Heterogeneous Media, 2 (2007), 661-694.
doi: 10.3934/nhm.2007.2.661. |
[4] |
G. A. Chechkin and A. Yu. Goritsky, S.N. Kruzhkov's Lectures on First-Order Quasilinear PDEs, in Analytical and Numerical Aspects of PDEs, Walter de Gruyter, 2009. |
[5] |
C. F. Daganzo, A Theory of Supply Chains, Springer-Verlag, New York, Berlin, Heidelberg, 2003.
doi: 10.1007/978-3-642-18152-8. |
[6] |
C. D'Apice, S. Göttlich, M. Herty and B. Piccoli, Modeling, Simulation, and Optimization of Supply Chains: A Continuous Approach, SIAM, Philadelphia, 2010.
doi: 10.1137/1.9780898717600. |
[7] |
C. D'Apice, P. I. Kogut and R. Manzo, Efficient controls for one class of fluid dynamic models, JFar East J. Appl. Math., 46 (2010), 85-119. |
[8] |
C. D'Apice and R. Manzo, A fluid-dynamic model for supply chain, Networks and Heterogeneous Media, 1 (2006), 379-398.
doi: 10.3934/nhm.2006.1.379. |
[9] |
C. D'Apice, R. Manzo and B. Piccoli, Modelling supply networks with partial differential equations, Quarterly of Applied Mathematics, 67 (2009), 419-440. |
[10] |
C. D'Apice, R. Manzo and B. Piccoli, Existence of solutions to Cauchy problems for a mixed continuum-discrete model for supply chains and networks, Journal of Mathematical Analysis and Applications, 362 (2010), 374-386.
doi: 10.1016/j.jmaa.2009.07.058. |
[11] |
C. D'Apice, R. Manzo and B. Piccoli, Optimal input flow for a PDE-ODE model of supply chains, Commun. Math. Sci., 10 (2012), 1225-1240.
doi: 10.4310/CMS.2012.v10.n4.a10. |
[12] |
C. D'Apice, R. Manzo and B. Piccoli, Numerical schemes for the optimal input flow of a supply-chain, SIAM Journal on Numerical Analysis, 51 (2013), 2634-2650.
doi: 10.1137/120889721. |
[13] |
F. Dubois and P. L. Lefloch, Boundary conditions for nonlinear hyperbolic systems of conservation laws, Journal of Differential Equations, 71 (1988), 93-122.
doi: 10.1016/0022-0396(88)90040-X. |
[14] |
E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, Boston, 1984.
doi: 10.1007/978-1-4684-9486-0. |
[15] |
S. Göttlich, M. Herty and A. Klar, Network models for supply chains, Comm. Math. Sci., 3 (2005), 545-559.
doi: 10.4310/CMS.2005.v3.n4.a5. |
[16] |
S. Göttlich, M. Herty and A. Klar, Modelling and optimization of supply chains on complex networks, Comm. Math. Sci., 4 (2006), 315-330.
doi: 10.4310/CMS.2006.v4.n2.a3. |
[17] |
K. Han, T. L. Friesz and T. Yao, A variational approach for continuous supply chain networks, SIAM J. Control Optim., 52 (2014), 663-686.
doi: 10.1137/120868943. |
[18] |
D. Helbing, S. Lämmer, T. Seidel, P. Seba and T. Platkowsk, Physics, stability and dynamics of supply networks, Phys. Rev., E, 70 (2004), 66-116.
doi: 10.1103/PhysRevE.70.066116. |
[19] |
M. Herty, A. Klar and B. Piccoli, Existence of solutions for supply chain models based on partial differential equations, SIAM J. Math. Anal., 39 (2007), 160-173.
doi: 10.1137/060659478. |
[20] |
C. Kirchner, M. Herty, S. Göttlich and A. Klar, Optimal Control for Continuous Supply Network Models, Netw. Heterog. Media, 1 (2006), 675-688.
doi: 10.3934/nhm.2006.1.675. |
[21] |
P. I. Kogut and G. Leugering, Optimal Control Problems for Partial Differential Equations on Reticulated Domains. Approximation and Asymptotic Analysis, Birkhäuser Verlag, Boston, 2011.
doi: 10.1007/978-0-8176-8149-4. |
[22] |
P. I. Kogut and R. Manzo, On Vector-valued approximation of state constrained optimal control problems for nonlinear hyperbolic conservation laws, Journal of Dynamical and Control Systems, 19 (2013), 381-404.
doi: 10.1007/s10883-013-9184-5. |
[23] |
M. La Marca, D. Armbruster, M. Herty and C. Ringhofer, Control of continuum models of production systems, IEEE Trans. Automatic Control, 55 (2010), 2511-2526.
doi: 10.1109/TAC.2010.2046925. |
[24] |
P. D. Lax, Hyperbolic System of Conservation Laws and the Mathematical Theory of Shock Waves, Society of Industrial and Applied Mathematics, Philadelfia, Pa., 1973. |
[25] |
M. Miranda, Comportamento delle successioni convergenti di frontiere minimali, Rend. Sem. Mat. Univ. Padova, 38 (1967), 238-257. |
[26] |
R. Schiel, Vector Optimization ans Control with PDEs and Pointwise State Constraints, PhD thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, 2014. |
[27] |
D. M. Zhuang, Density result for proper efficiencies, SIAM J. on Control and Optimiz., 32 (1994), 51-58.
doi: 10.1137/S0363012989171518. |
show all references
References:
[1] |
D. Armbruster, P. Degond and C. Ringhofer, A model for the dynamics of large queuing networks and supply chains, SIAM Journal on Applied Mathematics, 66 (2006), 896-920.
doi: 10.1137/040604625. |
[2] |
H. Attouch, G. Buttazzo and G. Michaille, Variational Analysis in Sobolev and BV Spaces: Application to PDE and Optimization, SIAM, Philadelphia, 2006. |
[3] |
G. Bretti, C. D'Apice, R. Manzo and B. Piccoli, A continuum-discrete model for supply chains dynamics, Networks and Heterogeneous Media, 2 (2007), 661-694.
doi: 10.3934/nhm.2007.2.661. |
[4] |
G. A. Chechkin and A. Yu. Goritsky, S.N. Kruzhkov's Lectures on First-Order Quasilinear PDEs, in Analytical and Numerical Aspects of PDEs, Walter de Gruyter, 2009. |
[5] |
C. F. Daganzo, A Theory of Supply Chains, Springer-Verlag, New York, Berlin, Heidelberg, 2003.
doi: 10.1007/978-3-642-18152-8. |
[6] |
C. D'Apice, S. Göttlich, M. Herty and B. Piccoli, Modeling, Simulation, and Optimization of Supply Chains: A Continuous Approach, SIAM, Philadelphia, 2010.
doi: 10.1137/1.9780898717600. |
[7] |
C. D'Apice, P. I. Kogut and R. Manzo, Efficient controls for one class of fluid dynamic models, JFar East J. Appl. Math., 46 (2010), 85-119. |
[8] |
C. D'Apice and R. Manzo, A fluid-dynamic model for supply chain, Networks and Heterogeneous Media, 1 (2006), 379-398.
doi: 10.3934/nhm.2006.1.379. |
[9] |
C. D'Apice, R. Manzo and B. Piccoli, Modelling supply networks with partial differential equations, Quarterly of Applied Mathematics, 67 (2009), 419-440. |
[10] |
C. D'Apice, R. Manzo and B. Piccoli, Existence of solutions to Cauchy problems for a mixed continuum-discrete model for supply chains and networks, Journal of Mathematical Analysis and Applications, 362 (2010), 374-386.
doi: 10.1016/j.jmaa.2009.07.058. |
[11] |
C. D'Apice, R. Manzo and B. Piccoli, Optimal input flow for a PDE-ODE model of supply chains, Commun. Math. Sci., 10 (2012), 1225-1240.
doi: 10.4310/CMS.2012.v10.n4.a10. |
[12] |
C. D'Apice, R. Manzo and B. Piccoli, Numerical schemes for the optimal input flow of a supply-chain, SIAM Journal on Numerical Analysis, 51 (2013), 2634-2650.
doi: 10.1137/120889721. |
[13] |
F. Dubois and P. L. Lefloch, Boundary conditions for nonlinear hyperbolic systems of conservation laws, Journal of Differential Equations, 71 (1988), 93-122.
doi: 10.1016/0022-0396(88)90040-X. |
[14] |
E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, Boston, 1984.
doi: 10.1007/978-1-4684-9486-0. |
[15] |
S. Göttlich, M. Herty and A. Klar, Network models for supply chains, Comm. Math. Sci., 3 (2005), 545-559.
doi: 10.4310/CMS.2005.v3.n4.a5. |
[16] |
S. Göttlich, M. Herty and A. Klar, Modelling and optimization of supply chains on complex networks, Comm. Math. Sci., 4 (2006), 315-330.
doi: 10.4310/CMS.2006.v4.n2.a3. |
[17] |
K. Han, T. L. Friesz and T. Yao, A variational approach for continuous supply chain networks, SIAM J. Control Optim., 52 (2014), 663-686.
doi: 10.1137/120868943. |
[18] |
D. Helbing, S. Lämmer, T. Seidel, P. Seba and T. Platkowsk, Physics, stability and dynamics of supply networks, Phys. Rev., E, 70 (2004), 66-116.
doi: 10.1103/PhysRevE.70.066116. |
[19] |
M. Herty, A. Klar and B. Piccoli, Existence of solutions for supply chain models based on partial differential equations, SIAM J. Math. Anal., 39 (2007), 160-173.
doi: 10.1137/060659478. |
[20] |
C. Kirchner, M. Herty, S. Göttlich and A. Klar, Optimal Control for Continuous Supply Network Models, Netw. Heterog. Media, 1 (2006), 675-688.
doi: 10.3934/nhm.2006.1.675. |
[21] |
P. I. Kogut and G. Leugering, Optimal Control Problems for Partial Differential Equations on Reticulated Domains. Approximation and Asymptotic Analysis, Birkhäuser Verlag, Boston, 2011.
doi: 10.1007/978-0-8176-8149-4. |
[22] |
P. I. Kogut and R. Manzo, On Vector-valued approximation of state constrained optimal control problems for nonlinear hyperbolic conservation laws, Journal of Dynamical and Control Systems, 19 (2013), 381-404.
doi: 10.1007/s10883-013-9184-5. |
[23] |
M. La Marca, D. Armbruster, M. Herty and C. Ringhofer, Control of continuum models of production systems, IEEE Trans. Automatic Control, 55 (2010), 2511-2526.
doi: 10.1109/TAC.2010.2046925. |
[24] |
P. D. Lax, Hyperbolic System of Conservation Laws and the Mathematical Theory of Shock Waves, Society of Industrial and Applied Mathematics, Philadelfia, Pa., 1973. |
[25] |
M. Miranda, Comportamento delle successioni convergenti di frontiere minimali, Rend. Sem. Mat. Univ. Padova, 38 (1967), 238-257. |
[26] |
R. Schiel, Vector Optimization ans Control with PDEs and Pointwise State Constraints, PhD thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, 2014. |
[27] |
D. M. Zhuang, Density result for proper efficiencies, SIAM J. on Control and Optimiz., 32 (1994), 51-58.
doi: 10.1137/S0363012989171518. |
[1] |
Shijin Deng, Weike Wang. Pointwise estimates of solutions for the multi-dimensional scalar conservation laws with relaxation. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1107-1138. doi: 10.3934/dcds.2011.30.1107 |
[2] |
Evgeny Yu. Panov. On a condition of strong precompactness and the decay of periodic entropy solutions to scalar conservation laws. Networks and Heterogeneous Media, 2016, 11 (2) : 349-367. doi: 10.3934/nhm.2016.11.349 |
[3] |
Young-Sam Kwon. On the well-posedness of entropy solutions for conservation laws with source terms. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 933-949. doi: 10.3934/dcds.2009.25.933 |
[4] |
Stefano Bianchini, Elio Marconi. On the concentration of entropy for scalar conservation laws. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 73-88. doi: 10.3934/dcdss.2016.9.73 |
[5] |
K. F. Cedric Yiu, S. Y. Wang, K. L. Mak. Optimal portfolios under a value-at-risk constraint with applications to inventory control in supply chains. Journal of Industrial and Management Optimization, 2008, 4 (1) : 81-94. doi: 10.3934/jimo.2008.4.81 |
[6] |
Christophe Prieur. Control of systems of conservation laws with boundary errors. Networks and Heterogeneous Media, 2009, 4 (2) : 393-407. doi: 10.3934/nhm.2009.4.393 |
[7] |
Xavier Litrico, Vincent Fromion, Gérard Scorletti. Robust feedforward boundary control of hyperbolic conservation laws. Networks and Heterogeneous Media, 2007, 2 (4) : 717-731. doi: 10.3934/nhm.2007.2.717 |
[8] |
Yanning Li, Edward Canepa, Christian Claudel. Efficient robust control of first order scalar conservation laws using semi-analytical solutions. Discrete and Continuous Dynamical Systems - S, 2014, 7 (3) : 525-542. doi: 10.3934/dcdss.2014.7.525 |
[9] |
Eitan Tadmor. Perfect derivatives, conservative differences and entropy stable computation of hyperbolic conservation laws. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4579-4598. doi: 10.3934/dcds.2016.36.4579 |
[10] |
Darko Mitrovic. New entropy conditions for scalar conservation laws with discontinuous flux. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1191-1210. doi: 10.3934/dcds.2011.30.1191 |
[11] |
Gui-Qiang Chen, Monica Torres. On the structure of solutions of nonlinear hyperbolic systems of conservation laws. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1011-1036. doi: 10.3934/cpaa.2011.10.1011 |
[12] |
C. M. Khalique, G. S. Pai. Conservation laws and invariant solutions for soil water equations. Conference Publications, 2003, 2003 (Special) : 477-481. doi: 10.3934/proc.2003.2003.477 |
[13] |
Boris P. Andreianov, Giuseppe Maria Coclite, Carlotta Donadello. Well-posedness for vanishing viscosity solutions of scalar conservation laws on a network. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5913-5942. doi: 10.3934/dcds.2017257 |
[14] |
Fengbai Li, Feng Rong. Decay of solutions to fractal parabolic conservation laws with large initial data. Communications on Pure and Applied Analysis, 2013, 12 (2) : 973-984. doi: 10.3934/cpaa.2013.12.973 |
[15] |
Lijuan Wang, Weike Wang. Pointwise estimates of solutions to conservation laws with nonlocal dissipation-type terms. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2835-2854. doi: 10.3934/cpaa.2019127 |
[16] |
Stephen C. Anco, Maria Luz Gandarias, Elena Recio. Conservation laws and line soliton solutions of a family of modified KP equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2655-2665. doi: 10.3934/dcdss.2020225 |
[17] |
Constantine M. Dafermos. Hyperbolic balance laws with relaxation. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4271-4285. doi: 10.3934/dcds.2016.36.4271 |
[18] |
Avner Friedman. Conservation laws in mathematical biology. Discrete and Continuous Dynamical Systems, 2012, 32 (9) : 3081-3097. doi: 10.3934/dcds.2012.32.3081 |
[19] |
Mauro Garavello. A review of conservation laws on networks. Networks and Heterogeneous Media, 2010, 5 (3) : 565-581. doi: 10.3934/nhm.2010.5.565 |
[20] |
Len G. Margolin, Roy S. Baty. Conservation laws in discrete geometry. Journal of Geometric Mechanics, 2019, 11 (2) : 187-203. doi: 10.3934/jgm.2019010 |
2020 Impact Factor: 1.213
Tools
Metrics
Other articles
by authors
[Back to Top]